Detailed Contents

Pre	eface	iv	
Acknowledgements vii			
QR	QR Code Content Details viii		
1.		oduction to Machine rning	1
	1.1	Need for Machine Learning	1
	1.2	Machine Learning Explained	3
	1.3	Machine Learning in Relation to Other Fields	5
		1.3.1 Machine Learning and Artificial Intelligence	5
		1.3.2 Machine Learning, Data Science, Data Mining, and Data Analytics	d 5
		1.3.3 Machine Learning and Statistics	6
	1.4	Types of Machine Learning	7
		1.4.1 Supervised Learning	8
		1.4.2 Unsupervised Learning	11
		1.4.3 Semi-supervised Learnin	g 12
		1.4.4 Reinforcement Learning	12
	1.5	Challenges of Machine Learnin	ng 13
	1.6	Machine Learning Process	14
	1.7	Machine Learning Applications	s 15
2.	Und	lerstanding Data	22
	2.1	What is Data?	22
		2.1.1 Types of Data	24
		2.1.2 Data Storage and Representation	25
	2.2	Big Data Analytics and Types of Analytics	of 26
	2.3	Big Data Analysis Framework	27
		2.3.1 Data Collection	29
	2.3.2 Data Preprocessing		
	2.4	Descriptive Statistics	34
	2.5	Univariate Data Analysis and Visualization	36

	2.5.1	Data Visualization	36
	2.5.2	Central Tendency	38
	2.5.3	Dispersion	40
	2.5.4	Shape	41
	2.5.5	Special Univariate Plots	43
2.6	Bivar Data	iate Data and Multivariate	44
	2 4.04	Bivariate Statistics	44 46
27		ivariate Statistics	40 47
		ntial Mathematics for	47
2.0		ivariate Data	49
	2.8.1	Linear Systems and Gaussian Elimination for Multivariate Data	49
	2.8.2	Matrix Decompositions	50
		Machine Learning and Importance of Probability and Statistics	52
2.9	Over	view of Hypothesis	57
		Comparing Learning Methods	59
2.10	Dim	ure Engineering and ensionality Reduction miques	62
		l Stepwise Forward	02
		Selection	63
	2.10.2	2 Stepwise Backward Elimination	63
	2.10.3	3 Principal Component Analysis	63
	2.10.4	1 Linear Discriminant Analysis	67
	2.10.5	5 Singular Value Decomposition	68

3.	Bas	ics of	Learning Theory	77
	3.1	Intro	duction to Learning and	
		its Ty	0	78
	3.2	Intro	duction to Computation	
		Learr	ning Theory	80
		-	n of a Learning System	81
	3.4		duction to Concept	
		Learr	C .	82
		3.4.1	Representation of a Hypothesis	83
		3.4.2	Hypothesis Space	85
		3.4.3	Heuristic Space Search	85
		3.4.4	Generalization and Specialization	86
		3.4.5	Hypothesis Space Search by Find-S Algorithm	88
		3.4.6	Version Spaces	90
	3.5	Indu	ction Biases	94
		3.5.1	Bias and Variance	95
		3.5.2	Bias vs Variance Tradeoff	96
		3.5.3	Best Fit in Machine Learning	97
	3.6	Mode	elling in Machine Learning	97
		3.6.1	Model Selection and Model Evaluation	98
		3.6.2	Re-sampling Methods	99
	3.7		ning Frameworks	104
			PAC Framework	104
		3.7.2	Estimating Hypothesis	
			Accuracy	106
		3.7.3	Hoeffding's Inequality	106
		3.7.4	Vapnik–Chervonenkis	
			Dimension	107
4.	Sim	ilarit	y-based Learning	115
	4.1		duction to Similarity or nce-based Learning	116
		4.1.1	Differences Between Instance	<u>)</u> -
			and Model-based Learning	116

	Detailed Contents	• xi
4.2	Nearest-Neighbor Learning	117
	Weighted <i>K</i> -Nearest-Neighbor	
	Algorithm	120
4.4	Nearest Centroid Classifier	123
4.5	Locally Weighted	
	Regression (LWR)	124
Reg	ression Analysis	130
5.1	Introduction to Regression	130
5.2	Introduction to Linearity,	
	Correlation, and Causation	131
5.3	Introduction to Linear	
	Regression	134
5.4	Validation of Regression Methods	120
55		138 141
	Multiple Linear Regression	141
	Polynomial Regression	142
	Logistic Regression	144
5.0	Ridge, Lasso, and Elastic Net Regression	147
	5.8.1 Ridge Regularization	148
	5.8.2 LASSO	149
	5.8.3 Elastic Net	149
Dec	ision Tree Learning	155
6.1	Introduction to Decision Tree	
	Learning Model	155
	6.1.1 Structure of a Decision	150
	Tree	156
()	6.1.2 Fundamentals of Entropy	159
6.2	Decision Tree Induction Algorithms	161
	6.2.1 ID3 Tree Construction	161
	6.2.2 C4.5 Construction	167
	6.2.3 Classification and Regression	
	Trees Construction	175
	6.2.4 Regression Trees	185
6.3	Validating and Pruning of	
	Decision Trees	190

۲

۲

۲

5.

6.

9.

7.	Rul	e-based Learning	196	
	7.1	1 Introduction		
	7.2	Sequential Covering Algorithm	198	
		7.2.1 PRISM	198	
	7.3	First Order Rule Learning	206	
		7.3.1 FOIL (First Order Inductive		
		Learner Algorithm)	208	
	7.4	Induction as Inverted Deduction	215	
	7.5	Inverting Resolution	215	
		7.5.1 Resolution Operator (Propositional Form)	215	
		7.5.2 Inverse Resolution Operator (Propositional Form)	216	
		7.5.3 First Order Resolution	216	
		7.5.4 Inverting First Order		
		Resolution	216	
	7.6	Analytical Learning or Explanatio		
		Based Learning (EBL)	217	
		7.6.1 Perfect Domain Theories	218	
	7.7	Active Learning	221	
		7.7.1 Active Learning Mechanisms	222	
		7.7.2 Query Strategies/Selection	223	
	79	Strategies	225	
		Association Rule Mining		
8.	Bay	esian Learning	234	
	8.1	Introduction to Probability-based		
		Learning	234	
		Fundamentals of Bayes Theorem	235	
	8.3	Classification Using Bayes Model	235	
		8.3.1 Naïve Bayes Algorithm	237	
		8.3.2 Brute Force Bayes	242	
		Algorithm	243	
		8.3.3 Bayes Optimal Classifier	243 244	
	Q /	8.3.4 Gibbs Algorithm	<u> 244</u>	
	0.4	Naïve Bayes Algorithm for Continuous Attributes	244	
	8.5	Other Popular Types of Naive		
		Bayes Classifiers	247	

9.	Prol	babil	ist	ic Graphical Models	253
	9.1	Intro	du	ction	253
	9.2	Baye	sia	n Belief Network	254
		9.2.1	С	onstructing BBN	254
		9.2.2	Ba	yesian Inferences	256
	9.3	Mark	kov	Chain	261
		9.3.1	Μ	arkov Model	261
		9.3.2	Hi	idden Markov Model	263
9.4 Problems Solved with HMM					264
		9.4.1	Eν	valuation Problem	265
		9.4.2	С	omputing Likelihood	
				obability	267
		9.4.3	De	ecoding Problem	269
		9.4.4	Ва	um-Welch Algorithm	272
10). Ar	tificia	al I	Neural Networks	279
	10.	1 Int	rod	uction	280
	10.	2 Bio	log	gical Neurons	280
10.3 Artificial Neurons			281		
		10.3	3.1	Simple Model of an Artific	zial
	Neuron				281
		10.3	3.2	Artificial Neural Network	
		10 /		Structure	282
	10			Activation Functions	282
	10.4	4 Per The		otron and Learning	284
				XOR Problem	287
				Delta Learning Rule and	
				Gradient Descent	288
	10.	5 Тур	pes	of Artificial Neural	
		Ne	two	orks	288
		10.5	5.1	Feed Forward Neural	•
		10		Network	289
		10.5	5.2	Fully Connected Neural Network	289
		10.5	5.3	Multi-Layer Perceptron (MLP)	289
10.5.4 Feedback Neural Network					s 290
	10.	6 Lea	irni	ing in a Multi-Layer	
		Per	cer	otron	290

27-Mar-21 8:45:05 AM

	10.7	Radial Basis Function Neural Network	297
	10.8	Self-Organizing Feature Map	301
	10.9	Popular Applications of Artificia Neural Networks	al 306
	10.10) Advantages and Disadvantage of ANN	s 306
	10.12	l Challenges of Artificial Neural Networks	307
11.	Sup	port Vector Machines	312
	11.1	Introduction to Support Vector	
		Machines	312
	11.2	Optimal Hyperplane	314
	11.3	Functional and Geometric Margin	316
	11.4	Hard Margin SVM as an Optimization Problem	319
		11.4.1 Lagrangian Optimization Problem	320
	11.5	Soft Margin Support Vector Machines	323
	11.6	Introduction to Kernels and Non-Linear SVM	326
	11.7	Kernel-based Non-Linear Classifier	330
	11.8	Support Vector Regression	331
		11.8.1 Relevance Vector	
		Machines	333
12.	Ens	emble Learning	339
	12.1	Introduction	339
		12.1.1 Ensembling Techniques	341
	12.2	Parallel Ensemble Models	341
		12.2.1 Voting	341
		12.2.2 Bootstrap Resampling	341
		12.2.3 Bagging	342
		12.2.4 Random Forest	342
	12.3	Incremental Ensemble Models	346
		12.3.1 Stacking	347

		Detailed Contents	xiii
		12.3.2 Cascading	347
	12.4	Sequential Ensemble Models	347
		12.4.1 AdaBoost	347
13.	Clus	stering Algorithms	361
	13.1	Introduction to Clustering	
		Approaches	361
	13.2	Proximity Measures	364
	13.3	Hierarchical Clustering	
		Algorithms	368
		13.3.1 Single Linkage or MIN Algorithm	368
		13.3.2 Complete Linkage or MAX	
		or Clique	371
		13.3.3 Average Linkage	371
		13.3.4 Mean-Shift Clustering	
		Algorithm	372
	13.4	Partitional Clustering Algorithm	373
	13.5	Density-based Methods	376
	13.6	Grid-based Approach	377
	13.7	Probability Model-based	
		Methods	379
		13.7.1 Fuzzy Clustering	379
		13.7.2 Expectation-Maximization (EM) Algorithm	380
	13.8	Cluster Evaluation Methods	382
14.			389
		Overview of Reinforcement	
	14.1	Learning	389
	14.2	Scope of Reinforcement	
		Learning	390
	14.3	Reinforcement Learning As	
		Machine Learning	392
	14.4	Components of Reinforcement Learning	393
	14 5	Markov Decision Process	396
		Multi-Arm Bandit Problem	570
	1 1.0	and Reinforcement Problem	
		Types	398

۲

۲

		Scan
		Scan
ML_FM.indd	14	

27-Mar-21	8:45:06 AM

 (\mathbf{r})

xiv	• D	etailed (Contents			
AIV	• D					
	14.7		-based Learning (Passive			
		Learni	0.	402		
	14.8	Model	Free Methods	406		
		14.8.1	Monte-Carlo Methods	407		
		14.8.2	Temporal Difference			
			Learning	408		
	14.9	Q-Lea	rning	409		
	14.10) SARS	SA Learning	410		
15.	Gen	etic Al	gorithms	417		
	15.1	Overv	iew of Genetic			
		Algori	thms	417		
	15.2	-	ization Problems and			
			Spaces	419		
	15.3		al Structure of a	100		
			c Algorithm	420		
	15.4		c Algorithm Components	422		
			Encoding Methods	422		
		15.4.2	Population Initialization	424		
		15.4.3	Fitness Functions	424		
		15.4.4	Selection Methods	425		
		15.4.5	Crossover Methods	428		
		15.4.6	Mutation Methods	429		
	15.5	Case S	tudies in Genetic			
		Algori	thms	430		
		15.5.1	Maximization of a			
			Function	430		
		15.5.2	Genetic Algorithm			
			Classifier	433		

		15.6.1 Sin	nulated Annealing	433
		15.6.2 Ge	netic Programming	434
16.	Dee	Deep Learning		
	16.1	Introduction to Deep Neural Networks		439
	16.2	Introduct and Optir	ion to Loss Functions nization	440
	16.3	Regularization MethodsConvolutional Neural NetworkTransfer LearningApplications of Deep Learning		442
	16.4			444
	16.5			451
	16.6			451
		16.6.1 Ro	botic Control	451
			ear Systems and n-linear Dynamics	452
		16.6.3 Da	ta Mining	452
		16.6.4 Au	tonomous Navigation	453
		16.6.5 Bic	oinformatics	453
		16.6.6 Sp	eech Recognition	453
		16.6.7 Tex	kt Analysis	454
	16.7	Recurrent	Neural Networks	454
	16.8	LSTM and	d GRU	457
	Bibliography			463
	Index About the Authors Related Titles			472
				480
				481

15.6 Evolutionary Computing

433

Scan for 'Appendix 1 - Python Language Fundamentals'

for 'Appendix 2 - Python Packages'

for 'Appendix 3 - Lab Manual with 25 Exercises'

Chapter 1

Introduction to Machine Learning

"Computers are able to see, hear and learn. Welcome to the future." — Dave Waters

Machine Learning (ML) is a promising and flourishing field. It can enable top management of an organization to extract the knowledge from the data stored in various archives of the business organizations to facilitate decision making. Such decisions can be useful for organizations to design new products, improve business processes, and to develop decision support systems.

Learning Objectives

- Explore the basics of machine learning
- Introduce types of machine learning
- Provide an overview of machine learning tasks
- State the components of the machine learning algorithm
- Explore the machine learning process
- Survey some machine learning applications

1.1 NEED FOR MACHINE LEARNING

Business organizations use huge amount of data for their daily activities. Earlier, the full potential of this data was not utilized due to two reasons. One reason was data being scattered across different archive systems and organizations not being able to integrate these sources fully. Secondly, the lack of awareness about software tools that could help to unearth the useful information from data. Not anymore! Business organizations have now started to use the latest technology, machine learning, for this purpose.

Machine learning has become so popular because of three reasons:

1. High volume of available data to manage: Big companies such as Facebook, Twitter, and YouTube generate huge amount of data that grows at a phenomenal rate. It is estimated that the data approximately gets doubled every year.

ML_01.indd 1

()

()

2 • Machine Learning

2. Second reason is that the cost of storage has reduced. The hardware cost has also dropped. Therefore, it is easier now to capture, process, store, distribute, and transmit the digital information.

۲

Third reason for popularity of machine learning is the availability of complex algorithms now. Especially with the advent of deep learning, many algorithms are available for machine learning.

With the popularity and ready adaption of machine learning by business organizations, it has become a dominant technology trend now. Before starting the machine learning journey, let us establish these terms - data, information, knowledge, intelligence, and wisdom. A knowledge pyramid is shown in Figure 1.1.

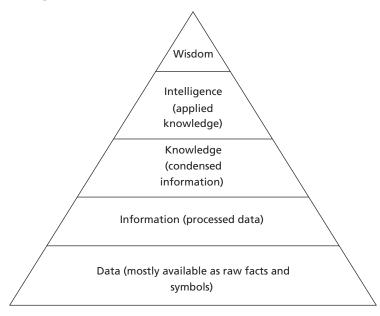


Figure 1.1: The Knowledge Pyramid

What is data? All facts are data. Data can be numbers or text that can be processed by a computer. Today, organizations are accumulating vast and growing amounts of data with data sources such as flat files, databases, or data warehouses in different storage formats.

Processed data is called information. This includes patterns, associations, or relationships among data. For example, sales data can be analyzed to extract information like which is the fast selling product. Condensed information is called knowledge. For example, the historical patterns and future trends obtained in the above sales data can be called knowledge. Unless knowledge is extracted, data is of no use. Similarly, knowledge is not useful unless it is put into action. Intelligence is the applied knowledge for actions. An actionable form of knowledge is called intelligence. Computer systems have been successful till this stage. The ultimate objective of knowledge pyramid is wisdom that represents the maturity of mind that is, so far, exhibited only by humans.

Here comes the need for machine learning. The objective of machine learning is to process these archival data for organizations to take better decisions to design new products, improve the business processes, and to develop effective decision support systems.

()

()

1.2 MACHINE LEARNING EXPLAINED

Machine learning is an important sub-branch of Artificial Intelligence (AI). A frequently quoted definition of machine learning was by Arthur Samuel, one of the pioneers of Artificial Intelligence. He stated that "*Machine learning is the field of study that gives the computers ability to learn without being explicitly programmed.*"

۲

The key to this definition is that the systems should learn by itself without explicit programming. How is it possible? It is widely known that to perform a computation, one needs to write programs that teach the computers how to do that computation.

In conventional programming, after understanding the problem, a detailed design of the program such as a flowchart or an algorithm needs to be created and converted into programs using a suitable programming language. This approach could be difficult for many real-world problems such as puzzles, games, and complex image recognition applications. Initially, artificial intelligence aims to understand these problems and develop general purpose rules manually. Then, these rules are formulated into logic and implemented in a program to create intelligent systems. This idea of developing intelligent systems by using logic and reasoning by converting an expert's knowledge into a set of rules and programs is called an expert system. An expert system like MYCIN was designed for medical diagnosis after converting the expert knowledge of many doctors into a system. However, this approach did not progress much as programs lacked real intelligence. The word MYCIN is derived from the fact that most of the antibiotics' names end with 'mycin'.

The above approach was impractical in many domains as programs still depended on human expertise and hence did not truly exhibit intelligence. Then, the momentum shifted to machine learning in the form of data driven systems. The focus of AI is to develop intelligent systems by using data-driven approach, where data is used as an input to develop intelligent models. The models can then be used to predict new inputs. Thus, the aim of machine learning is to learn a model or set of rules from the given dataset automatically so that it can predict the unknown data correctly.

As humans take decisions based on an experience, computers make models based on extracted patterns in the input data and then use these data-filled models for prediction and to take decisions. For computers, the learnt model is equivalent to human experience. This is shown in Figure 1.2.

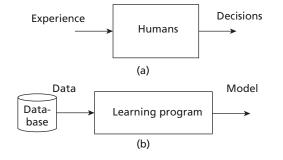


Figure 1.2: (a) A Learning System for Humans (b) A Learning System for Machine Learning

Often, the quality of data determines the quality of experience and, therefore, the quality of the learning system. In statistical learning, the relationship between the input *x* and output *y* is

()

()

4 • Machine Learning

modeled as a function in the form y = f(x). Here, f is the learning function that maps the input x to output y. Learning of function f is the crucial aspect of forming a model in statistical learning. In machine learning, this is simply called mapping of input to output.

()

The learning program summarizes the raw data in a model. Formally stated, a model is an explicit description of patterns within the data in the form of:

- 1. Mathematical equation
- 2. Relational diagrams like trees/graphs
- 3. Logical if/else rules, or
- 4. Groupings called clusters

In summary, a model can be a formula, procedure or representation that can generate data decisions. The difference between pattern and model is that the former is local and applicable only to certain attributes but the latter is global and fits the entire dataset. For example, a model can be helpful to examine whether a given email is spam or not. The point is that the model is generated automatically from the given data.

Another pioneer of AI, Tom Mitchell's definition of machine learning states that, "A computer program is said to learn from experience E, with respect to task T and some performance measure P, if its performance on T measured by P improves with experience E." The important components of this definition are experience E, task T, and performance measure P.

For example, the task T could be detecting an object in an image. The machine can gain the knowledge of object using training dataset of thousands of images. This is called experience E. So, the focus is to use this experience E for this task of object detection T. The ability of the system to detect the object is measured by performance measures like precision and recall. Based on the performance measures, course correction can be done to improve the performance of the system.

Models of computer systems are equivalent to human experience. Experience is based on data. Humans gain experience by various means. They gain knowledge by rote learning. They observe others and imitate it. Humans gain a lot of knowledge from teachers and books. We learn many things by trial and error. Once the knowledge is gained, when a new problem is encountered, humans search for similar past situations and then formulate the heuristics and use that for prediction. But, in systems, experience is gathered by these steps:

- 1. Collection of data
- Once data is gathered, abstract concepts are formed out of that data. Abstraction is used to generate concepts. This is equivalent to humans' idea of objects, for example, we have some idea about how an elephant looks like.
- 3. Generalization converts the abstraction into an actionable form of intelligence. It can be viewed as ordering of all possible concepts. So, generalization involves ranking of concepts, inferencing from them and formation of heuristics, an actionable aspect of intelligence. Heuristics are educated guesses for all tasks. For example, if one runs or encounters a danger, it is the resultant of human experience or his heuristics formation. In machines, it happens the same way.
- 4. Heuristics normally works! But, occasionally, it may fail too. It is not the fault of heuristics as it is just a 'rule of thumb'. The course correction is done by taking evaluation measures. Evaluation checks the thoroughness of the models and to-do course correction, if necessary, to generate better formulations.

()

 (\mathbf{r})

1.3 MACHINE LEARNING IN RELATION TO OTHER FIELDS

Machine learning uses the concepts of Artificial Intelligence, Data Science, and Statistics primarily. It is the resultant of combined ideas of diverse fields.

۲

1.3.1 Machine Learning and Artificial Intelligence

Machine learning is an important branch of AI, which is a much broader subject. The aim of AI is to develop intelligent agents. An agent can be a robot, humans, or any autonomous systems. Initially, the idea of AI was ambitious, that is, to develop intelligent systems like human beings. The focus was on logic and logical inferences. It had seen many ups and downs. These down periods were called AI winters.

The resurgence in AI happened due to development of data driven systems. The aim is to find relations and regularities present in the data. Machine learning is the subbranch of AI, whose aim is to extract the patterns for prediction. It is a broad field that includes learning from examples and other areas like reinforcement learning. The relationship of AI and machine learning is shown in Figure 1.3. The model can take an unknown instance and generate results.

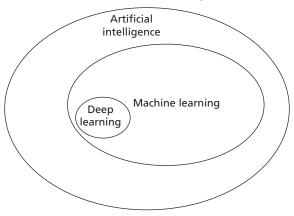


Figure 1.3: Relationship of AI with Machine Learning

Deep learning is a subbranch of machine learning. In deep learning, the models are constructed using neural network technology. Neural networks are based on the human neuron models. Many neurons form a network connected with the activation functions that trigger further neurons to perform tasks.

1.3.2 Machine Learning, Data Science, Data Mining, and Data Analytics

Data science is an 'Umbrella' term that encompasses many fields. Machine learning starts with data. Therefore, data science and machine learning are interlinked. Machine learning is a branch of data science. Data science deals with gathering of data for analysis. It is a broad field that includes:

()

()