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Chapter — 3
Digital Image Processing
Operations
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BASIC RELATIONSHIPS AND
DISTANCE METRICS

Image Coordinate System

217(0,2) f(L2) f(2,2)
170, f@1D f@E21)
=017(0,0) f(1,0) f(2,0)
xX=0 1 2

Y

Fig. 3.1 Analogimage f{x, y) in the first quadrant of Cartesian coordinate system
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Image Coordinate system

=0 #=1l H=2 p=l m=2 w=)
=0/7(0,0) 70,1 f(0,2) m=1fLY f1,2) f(3)
=11 f(L0) fQL,Y) f(L,2) m=2/21) f(22) f(23
m=2\f(2,00 f2,1) f2,2) m=3f31 132 f(33)

@) (b)

Fig. 3.2 Discrete image (a)Image in the fourth quadrant of Cartesian coordinate system
(b} Image coordinates as handled by software environments such as MATLAB

© Oxford University Press 2011



Image Topology

In N,(p), the reference pixel p(x, y) at the coordiate position (x, y) has two horizontal
and two vertical pixels as neighbours. This 15 shown graphically i Fig. 3.3.

0 X 0
X px,y) X
0 X 0

Fig. 3.3  4-Neighbourhood N (p)
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Diagonal Elements

(X 0 X

0 px,y) O
X 0 X

Fig. 3.4 Diagonal elements N _(p)
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8-Neighbourhood

&' X .
X px,y) X
X X X,

Fig. 3.5 &-Neighbourhood N ( p)
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Connectivity

4-Connectivity The pixels p and g are said to be 1 4-connectivity when both have the
same values as specified by the set /"and if ¢ 15 said to be in the set N,(p). This implies
any path from p to g on which every other pixel 1s 4-connected to the next pixel.

§-Connectivity It 15 assumed that the pixels p and g share a common grey scale value. The
pixels p and g are said to be in 8-connectivity if ¢ is in the set N(p).

Mived connectinty Mixed connectrvity 15 also known as m-connectivity. Two pixels
p and g are said to be i m-connectivity when

L gismN(p)or
2. q1sm N, (p) and the mtersection of N,(p) and V,(g) 1s empty.
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8-connectivity Vs m-connectivity

i 0 1

0 0 1
Fig. 3.7 m-Connectivity
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Relations

Reflexive  For any element @ in the set A, if the relation aRa holds, this 1s known as a
reflexive relation.

Symmetric  If aRb implies that bRa also exists, this 1s known as a symmetric relation.

Transitive If the relations aRb and bRc exist, it implies that the relationship aRe also
exists. This 15 called the transitivity property.
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Distance Measures

01 1 1z)
1 0 01
L1 1 1(q)
111

Lr)
Fig. 3.9 Sample image

The distance function can be called metric 1f the following properties are satisfied.

. D(p. q) 1s well-defined and finste for all p and g.

2. D(p.q)201fp=g, then D(p, g)=0.
3. The distance D(p. g)=D(g.p).
4 D(p.q)+D(g.2) = D(p, 7). This 1s called the property of triangular mequality
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Distance Measures

The Euclidean distance between the pixels p and g. with coordinates (x, y) and (s, 1),
respectively. can be defined as

D(p.q)=(x=35)+(y-1)

The advantage of the Euclidean distance 1s 1ts simplicity. However, since its calculation
involves a square root operation, if 1s computationally very costly.
The D, distance or city block distance can be simply calculated as

D,(p.g)= |.1'— .';| - |_1'— !|
The }J'E distance or chessboard distance can be calculated as

D.(p,g)=max {|1— sl |v- !|}
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Fig. 3.11 Distance measures (a) Distance D, (b) Distance D when V= {0, 1}
(c) Distance D_ when V¥=1{0, 1} (d] Distance D_ when V= {1}
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Classification of Image Operations

* One way of classification is
Point

Local and
Global
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Classification

1. Linear operations 2. Non-linear operations

An operator 15 called a linear operator if it obeys the following rules of additivity and
homogeneity. A non-linear operator, as the name suggests, does not follow these rules.

1. Property of additrvity
Hia f(x, y)+a,f,(x, )= Hia f,(x, y) + Ha, f,(x. ¥))
=aH(f(x. y)+aH(f,(x,y))
2. Property of homogeneity =0 X g% V) +a,X gyl x, Y)

H(kf,(x,y))=kH(f,(x,y))= kg, (x, y)
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Image Vs Array Operations

Image operations are array operations. These operations are done on a prxel-by-poxel basts.
Array operations are different from matrix operations. For example, consider two images

(4 B [E F
F, :[ and F, =
C D G H

The multiplication of F, and F, 1s element-wise, as follows:
. .. [AE BF
F,«F,=
- \CG HD

In addition, one can observe that F x F, = F, x F . whereas matrix multiplication is
clearly different, since in matrices, 4% B # B x A. By default, image operations are
array operations only.
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Arithmetic operations - Addition

Two images can be added in a direct manner, as given by

g(x, v)= fi{x. v)+ fL(x, ¥)

Table 3.1 Data type and allowed ranges

S.no. Datatvpe Data range

1 Uint 2 0-233

2 Ointle 065333

3 Uint32 042949 67 295

4 Uinied  0-1,84.46,74.40.73,70,95, 51 613

Similarly, if 1s possible fo add a constant value to a single image, as follows:

glx. v)=filx, y)+k
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Fig. 3.14 Results of the image addition operation (a) Image 1 (b) Image 2
(c) Addition of images 1 and 2 (d) Addition of image 1 and constant 50
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Image Subtraction

The subtraction of two images can be done as follows. Consider

glx, y)=fi(x, ¥y)— f(x. ¥)

where f(x. ¥) and f(x. ¥) are two input images and g(x. ¥) 1s the output image. To avoid
negative values, it 1s desirable to find the modulus of the difference as

g )= - L)
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(b)

{c) (d)

Fig. 3.15 Results of the image subtraction operation (a) Image 1 (b) Image 2
(c) Subtraction of images 1 and 2 (d) Subtraction of constant 50 from image 1
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Image Multiplication

glx, ¥)= fi(x, ¥)= fL(x, ¥)
glx,y)=fix,¥)xk

Fig. 3.16 Result of multiplication operation (image x 1.25) resulting in good contrast
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Image Division

Similar to the other operations, division can be performed as

TAEAY

Jalx, v)

where f(x. ¥) and £ (x, ¥) are two input images and g(x, y) is the output image.

gix, y)=

fix, y)
i

o(x, v)= . where k is a constant.
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Image Division

(d) (e)

Fig. 3.17 Image division operation (a) Result of the image division operation (image/1.25)
(b) Image 1 (c) Image 2 used as a mask (d) Image 3 =image 1 x image 2
(e) Image 4 =image 3/image 1

© Oxford University Press 2011



Logical Operations

1. AND/NAND 3. EXOREXNOR
2. OR/NOR 4. Invert/Logical NOT
(=)

{c) (d)

Fig. 3.18 Results of the AND and OR logical operators (a) Image 1 (b)) Image 2
(c] Result of image 1 AND image 2 (d) Result of image 1 OR image 2
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XOR

p

Fig. 3.19 Result of the XOR operation
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NOT Operation

Fig. 3.20 Result of the NOT operation
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Geometrical Operation

¥=x+0x
y'=y+8y

Fig. 3.21 Result of translation by 50 units
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Scaling Operations

X =xx8x
V' =yx Sy
i # #5": ﬂ .
[x". ) ]—[ 0 5 [x, ¥]
5,0 0
[¥. ¥, 1]=|0 5 0 [.!1'._1.'.I]'I
00 1
(5, 0 0
The matrix §=| 0§, 0| is called scaling matrix.
Lo 0 1
\
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Zooming

For example, the image F is replicated as follows:

lad =

I
=1 Il =T
olo|lo|o

= S =1

S| S|S|S
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Linear Interpolation

Consider the image

Linear inferpolation is equivalent to fitting a straight line by taking the average along the
rows and the colummns. The process 1s described as follows:

1. For example,. the matrix & can be zero-interlaced as

0

W0 |=

o|o|o|o

ol=10 |
]
o|o|g

2 Interpolate the rows. This is achieved by taking the average of the columns. This

wields
2 1.5 1|05
O O O O
1 2 3 1.5
O O O O

3. Interpolate the columns. This is achieved by taking the average of the rows. This

wields
2 1.5 1 0.5
1.5 | 1.75 2 1
1 2 3 1.5
0.5 1 15 | 075
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Reflection

Reflection along X
10 1
F=|-x¥ =[ | X, ¥
Frol=(y 5 <l
Similarly, the reflection along the y-axis 1s given by
-1 0

I:ﬂ:[:t-—}']:[t] 1

Similarly, the reflection about the line y = x is given as

A _1']-"

F'=| :n—_v]:[ ? {IIIJ x| x, }']'-

The reflection about y = —x is given as

0 -1 T
F'=[L—_1.-']=( - :-c[L_‘L']I

. A
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Shearing

Shearing can be done using the following calculation and can be represented in the
matnx form as

xX'=sh %y
yV=y
1 00
Xy, =|sh 1 0
0 0 1
Similarly, ¥ can be given as
X¥=x
V'=yxsh,
I sh, O
Voer =0 1 0
0 0 1

where sh,_and sh are shear factors in the x and y directions. respectively.
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Rotation

cos@ —sinf 0
[x".y".1]=| sin@ cos® O |[x, 1]
0 0 1

If 6 is substituted with —6, this matrix rotates the image in the clockwise direction.

(b)
Fig. 3.23 Rotation (a) Original image (b) Result of rotation by 45°
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Affine Transform

x=T(x,¥)
v=T(x,¥)

I' _and I are expressed as polynomials. The linear equation gives an affine transform.
XY =ax+ay+a,
v=bx+by+h,

This is expressed in matrix form as

('Y [a, a a ) x)
[ Vii=|bh b b fly
1) Lo o 1)1
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Inverse Transform

—0x

| 0
Inverse transform for translation={0 1 &y
0 0

Inverse transform for scaling=| 0 L 0

Inverse transform for rotation can be obtained by changing the sign of the transform
term. For example, the following matnx performs inverse transform.

cos®  +sin@ 0
—singd cos8 0
0 0 |
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CosE —sime e
SimeEd Cos e L
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Similarly, the reflection transform matrices can be given as

i

= o

Reflection__ . =

o o o -
oD =D
L
=

J,.
=
-

Reflection =

yaaxis

-~
=

Reflection =

T-axis

2 e 0 O QO = O O

e Y e [ e
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The shear matrices for the shear quantities @ and 5 can be given as

R
01 0 0
Shear =
a b 1 0
0 0 0 1,
(1 a b 0)
0 1 0 0
Shear =
0 0 1
0 0 0 1,
o (N A
a 1 b
Shear =
10 0 1
0 0 0 1,
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Image Interpolation

* Downsampling

| Example 3.5 TS0 subsampling on the following image.

I-|.1

[l
O] el | D] e
8| taa | B | e

0| el | D] e

o N I ST Y I S

© Oxford University Press 2011



Solufion
Subsampling can be done by choosing an upper-left pixel and replacing the neighbourhood

with a chosen pixel value, 1€,
v i ]
133

This method 1s called single pixel selection.

Alternatively, a statistical sample can be chosen. This can be the mean of the pixels;
1t replaces the neighbourhood. This techmque yields

(3434049 34+34940)

y 4 4 _Er b
13434040 3434040 |6 6
\ 4 4 )
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Upsampling

(b)
Fig.3.24 Results of interpolation (a) Nearest neighbour (b) Bilinear (c) Bicubic
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Set Operations

01 2
o1 0 1
F=1{0 0 0
20 0 1

Fig. 3.25 Sample binary image
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The complement of set A can be defined as the set of pixels that does not belong to the set 4.
A'={cce A
The reflection of the set is defined as
A={c=-a,a¢e A
The unton of two sefs, 4 and B, can be represented as
AuB={c/ice A)vice B}

where the puxel ¢ belongs to A, B, or both.
The intersection of two sets is given as AnB={clce A)a(ceB)}. The pixel

¢ belongs to 4. 5. or both.
The difference can be expressed as

A-B={clice A)nice B))
which 1s equivalent to 4 m B°.
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(d]

Fig. 3.26 Dilation operation (a) Effects of dilation and erosion for a numerical example
(b) Original large image (c) Dilation operation with structural element (3, 3)

(d) Dilation operation with structural element (9, 9) (e) Dilation operation
with structural element (13, 13)
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Statistical Operations

Mean

Mode

Standard deviation
Variance
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2550

0.0

(a) (b)
Fig. 3.27 Surface plot (a) Original image (b) Surface plot
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Image Convolution

The one-dimensional convolution formula is as follows:
gix)=t*f(x)

= 1) f(x—1i)
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1D-Convolution

Let F=10.0,2, 0,0} and the kernel be {7 5 1}. As mentioned, the template has to be
rotated by 180°. The rotated mask of this original mask [7 5 1] 15 a convolution template
whose dimension 15 1 x 3 with value {1, 5. 7}.

To carry out the convolution process, first, the process of zero padding should be

carried out. Zero padding is process of creating more zeros and 15 done as shown m
Table 3.7. Added zeros are underhned.

Table 3.7 Zero padding process for
convolution

(s T =
= e
= -

= =
= e
[ S |
=
| o}
=
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Table 3.8

Conwvolution process

im) Imitial position

by Position after one shifit

Template Tenplate is shifited by ome it
1 = 7 1 2 T
o o ] o 2 o o ] o ] o ] o 2 ] o o
o o ]
Cntpnt is produced in the centre pixel. Crotpuot produced is Zeno.
(c) Position after two shifis (d) Position after three shifts
Template is shifted aoadn. Tenuplate is shifted agaim
1 > 7 1 = i
o o o ] 2 o o o ] ] o ] o 2 ] o o
] o 14 o o 14 10
Cntpnt poodpced is 14, Crotpuoft produced is 100
el Position after four shifis (f) Position after five shifis
Template is shifted aoadn. Tenuplate is shifted agaim
1 2 7 1 3 7
o o ] o 2 1] o ] 1] ] 1] o o 2 ] o o

o ] 14 10 2
Cntpunt poodpced is 2.

o o 14 10 =2 o
Crotpuoft produced is 0.

iz Final positiomn
Template iz shifted aoadim
1 2 7
o o o o 2 ] o o o
o o 14 10 = o ]
Cmtpnt poodunced is 0. Funther shift coosses

the range.
Hence the proress is stopped.

50 1n the final position, the output produced 1s [0 0 14 10 2 O O].
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1D-Correlation

Table 3.9 Zero padding process for
correlation

el = 1 T =3 i
0 0 L8] 0 2z 0 [0 ] o 0

The padded zeroes are underlined. The correlation process is similar to the comnvolution
process described. This process is shown in Table 3 10

Table 3.10 Correlation process

() Indtial position i) Position after omne shifit
Tennplahe Template is shifed by one bdt.
7 a 1 - = 1
o o o o ] 0 o o 0 o 0 o 0 2 o 0 o 0
0] o o
Crubput pooduced is O Onatpast poocinced is 0.
(o) Position after tvwo shifts (dp Position after three shifts
Template is shdfied agaim. Template is shified agadn.
T a5 1 T = i
o o o o ] 0 o o 0 o 0 o 0 2 o 0 o 0
0] o 2 o o prs 10
Crufput pooduced is 2 Onatpaat poowcinacexd is 100
e Position after fonr shifts ifi Position after five shifts
Template is shdfied agaim. Template is shified agadn.
7T s 1 E 1
o L8] o L8] = o o O o o o o o 2 O o o o
o o 2 10 1 0 o 2 10 14 o
Crutput pooduced is 14 Onatpoat pocsdacesd is 0.

(g Final positiomn
Templabe is shafied again.

O o o o 2 o o
o o z 1o 14 o
Ouodpet pamecbnces] is 0O

o ow
Q

So in the final position. the output produced is [0 2 10 14 O O].
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2D-Convolution

If (i, j) 1s a template of dimension n = m and the image (7, j) 1s the input image, the
convolution of fwith T is written as

m—l

m—
F*T=% Y1, j)x flx—i,y—j)
=]

=0

The convolution process on a 2D image can be shown as follows. Consider an image

ra ra

2 2 1 1)
F = [ and the template or mask isr= [
2 2 A 1
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Convolution process (a) Initial position {b) Position after first shift (c) Position

after second shift (d) Position after first vertical shift () Position aftter third shift

Fig. 3.28

(f) Position atbter fourth shift (g) Position after second wertical shift

(h) Position after fifth shift (i) Position after sixth shift
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Properties of Convolution

Convolution 1s separable.
Convolution 15 commutative.

1.
2.
[*T=T*f
3. Convolution 15 associative.
(f*I)*h=fXI*h)
4. Convolution follows the principle of superposition.

(f+e)*I=f*T+g*T
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Data Structures

1. Matrix

2. Cham code

3. Graphs

4. Relational databases

5. Hierarchical data structures
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Chain Code

[

() 4 ()

3 i
(a) (b)

Fig. 3.29 Image chain codes (a) 4-Directional code (b) 8-Directional code
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RAG

]
0
(13 (2 )
\a) b)

Fig. 3.30 Region adjacency graph (a) Sample image (b) RAG for given sample image
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Relational Structures

Table 311 Relational structure

Object number ~ Object name  Object attributes such as row, colunm, and colonr
l l

y 1
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Hierarchical Structures

(b) (c)
Fig. 3.31 Structure of M-pyramid (a) Original image (b) Pyramid level 1 (c) Pyramid level 2
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Pyramid Structures

s e A
Fig. 3.32 T-pyramid data structure
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Quadtree

Ajz

A | Az n
(a

) (b)
Fig. 3.33 Quadtrees (a) Sample image (b) Quadtree
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Application Development

Application
Licence
plate
recOgnition
Image Image Image
ACUISILIONn enbancement analysis

Ciperations
Imnproswe et
of brightness

Improvement
of contrast

Modse
rerrronal

FPFrocess

Convolyve
sy Imagne
wiithy filter

Fig. 3.34 Organization of an image processing application—number plate
recognition system
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SUMMARY

L.

[t

. Whenever a

The digital image 15 characterized by the image
coordinate system and the neighbourhood
concept.

. The distance between the pixels p and g in an

image can be given by distance measures such
as Euclidian distance, D4 distance, and Da
distance.

. Point operations are operations whose ouftput

value at a specific coordinate 15 dependent only
on the input value.

. A local operation 1s an operation whose output

value at a specific coordinate 15 dependent on
the mput values in the neighbourhood of that

pixel.

. Global operations are operations whose output

value at a specific coordinate 15 dependent on all
the values in the input image.

. Some of the widely vsed image operations are

anithmetic, logical, geometrical, statistical, and
spatial operations.

geometric  transformation  1s
performed, a resampling process should be carmed
out so that the desirable qualify 15 maintained in
the resultant image.

. Upsampling is a process of mcreasing the spatial

resolution of the image. Downsampling decreases
the spatial resolution.

9.

. Belational databases can also

.Image processing

Image processing, image analysis, and computer
vision require good form of data representation
of orgamization Some data stroctures that are
traditionally used to manipulate digital images
are matrices, chain codes, graphs, and relational
databases.

. Matrix 15 one of the most popular data stmactores

for storing and mampulating the images in the
initial level of pixels.

.Chain codes or Freeman codes are used to

represent the boundary of an image.

. The region adjacency graph (RAG) 15 a data

structure that is used to represent regions and
their adjacency.

be used for
representation of information of an image. The
table can record the different objects that are
present in the image. The obyects can then be
searched using the keys.

. Pyrammds are among the simplest haerarchacal

data structures. Pyramids are helpful in working
at the different resolutions of the image.

applications should be
developed in a methodical, stroctored, and
disciplined manner. The hierarchy of the image
processing  applications can be defined as
applications — classes — operations — process.
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