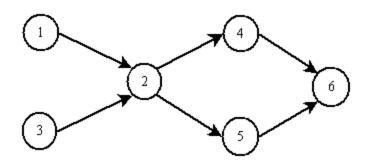
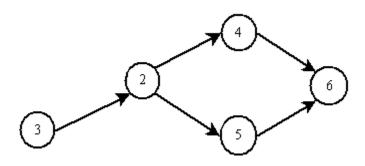
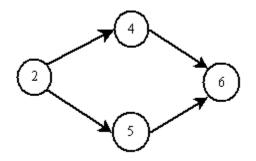

Chapter 9


9.1 Using Insertion sort, sort the following set of numbers:

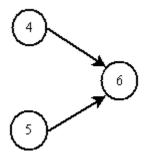
Illustrate the intermediate steps.

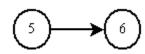
Solution:


9.2 Using Topological Sort, arrange the vertices of the following graphs:


Solution:

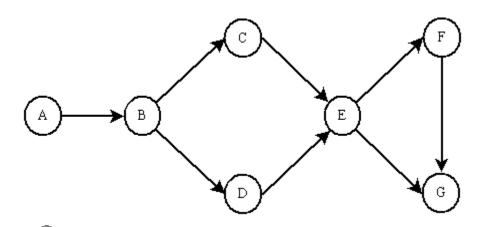
a)


Delete node ①

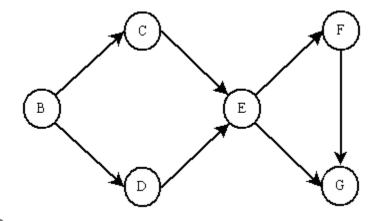

Delete node 3

Delete node ②

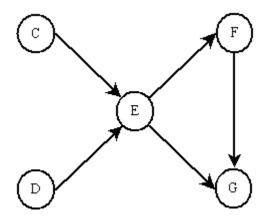
Delete node 4

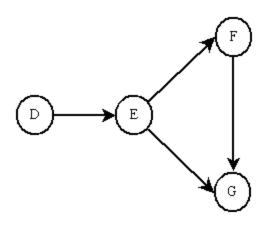


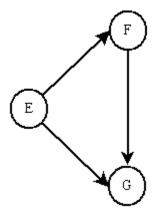
Delete node ⑤


6

 \therefore The topological order is : 1, 3, 2, 4, 5, 6


b)


Delete node (A)


Delete node B

Delete node ©

Delete node D

Delete node E

Delete node F

Delete node G

∴ The final Topological order is

- **9.3** Apply the Johnson-Trotter algorithm for performing permutations for the following objects:
 - a) 1, 2, 3, 4

The intermediate steps are given as

- <1 <2 < 3 < 4
- <1 <2 <4 <3
- <1 <4 <2 <3
- <4 <1 <2 ,3
- 4><1<2<3
- <1 4. <3 <2
- <1 <3 4> <2
- <1 <3 <2 4>
- <3 <1 <2 <4
- <3 <1 <4 <2 <3 <4 <1 <2
- <3 <4 <1 <2
- <4 <3 <1 <2 4> 3> <2 <1
- 2. 4. .2 .1
- 3>4><2<1
- 3><2 4><1
- 3 << 2 <1 <4
- <2 3><1 <4
- <2 3><4 <1
- <2 <4 3><1
- <4 <2 3><1
- 4 ><2 <1 3>
- <2 4> <1 3.
- <2 <1 4> 3>
- <2 <1 3> 4>
- b) A D M

$$<\!A\,<\,M\,<\,D$$

∴The possible permutations are

A D M

A M D

M A D

M D A

D M A

D A M

9.4 Consider four elements A, B, C and D. Find the permutation of the sequence.

Solution:

The possible partitions are given below:

9.5 Consider a set $S = \{1, 2, 3, 6\}$. Find power set of S.

0 0 0 0

0 0 0 1 {6}

0 0 1 0 {3}

0 0 1 1 {3,6}

0 1 0 0 {2}

0 1 0 1 {2,6}

0 1 1 0 {2,3}

0 1 1 1 {2,3,6}

1 0 0 0 {1}

1 0 0 1 {1,6}

1 0 1 0 {1,3}

1 0 1 1 {1,3,6}

1 1 0 0 {1,2}

1 1 0 1 {1,2,6}

1 1 1 0 {1,2,3}

1 1 1 1 {1,2,3,6}

9.6 Simulate a fake coin problem for 12 coins

Solution:

Partition the coins to three sets as (1,2,3,4) (5,6,7,8) and (A,B,C,D)

- 1. If (1,2,3,4) is equal to (5,6,7,8), then defective is ABCD
- 2. If (1,2,3,4) < (5,6,7,8) then the first group is having less weight
- 3. If (1,2,3,4) > (5,6,7,8), then the first group is having more weight

Then proceed to the appropriate group. In three weighting, one can find the group.

- **9.7** Compute the following multiplications using the Russian Peasant method:
 - a) 87×14

Solution

$$43 \quad 28 \quad +28$$

$$5$$
 224 $+224$

Therefore,
$$14 + 28 + 56 + 224 + 896 = 1218$$
.

b) 1 27 X 64

Solution

$$7 \quad 1024 \quad +1024$$

$$3 \quad 2048 \quad +2048$$

Therefore, the total is 8128.

6 Apply binary search for the following instances of an array (key is 14) and illustrate the intermediate results.

a)
$$11 \quad 13 \quad 14 \quad 16$$
 17 19 $22 \oplus \frac{(1+7)}{2} = 4$ A(4) = 16

∴ Search lower array

$$\underbrace{14 \quad 16} \ @ \text{ Find mid } \frac{\left(1+4\right)}{2} = 2$$

$$A(2) = 13$$

So Search upper part of A

$$A(1) = 14$$

Since key = A(1) return success.

i)
$$mid = \left| \frac{1+8}{2} \right| = 4$$
, A[mid] = 27

key = 14 < 27, search lower half { 11, 15, 20, 27 }

ii)
$$mid = \left| \frac{1+4}{2} \right| = 2$$
, A[mid] = 15

key = 14 < 15, search lower half { 11, 15 }

iii)
$$mid = \left| \frac{1+2}{2} \right| = 1, A[mid] = 11$$

key $11 \neq 15$, return that the item is not present.

7 Select the items specified by location 3 and 7 using selection method.

Since the array is sorted.

A(3) = 17 and it can be sent as result.

A(7) = 27 and sent as result.

8 Find the median of the following array using selection method

$$= 16.$$

: the median of median is 16.

Looking for location 5

$$|A_{less}| = |2|, |A_{equal}| = 1$$

 $|A_{greater}| = 6, k = 5$
 $K = 5, 9 - 2 - 1 = 6$
 \therefore split the $|A_{greater}|$ list again and look for 1
 $\{17, 18, 19, 21, 23, 27\}$
 $\{17\} \{18\} \{19, 21, 23, 27\}$

Recur for ① to get 18 as median.

b) Find the median of median of the following array

{ 11, 14, 16, 17 } { 18, 21, 27} { 14, 21 }

{ 14 } is median of median.