Chapter 7

7.1 Consider the following elements and apply bubble sort. How many comparisons and swaps are required for bubble sort in this instance?

Solution:

Pass1: compare 2 and 5 No swap

5 and 4 Swap

5 and 2 Swap

5 and 7 No Swap

7 and 1 Swap

Hence element 7 comes to the end of this list.

In Pass2: 5 would bubble to last but one position.

In Pass3: 4 would bubble to last but two positions.

In Pass4: 2 would bubble to last but third position.

In Pass5: 2 would bubble to last but fourth position.

In pass 1 and 2 and compared and no swap. The iteration would stop.

- \therefore The final list would be $\{1, 2, 3, 4, 5, 7\}$
- **7.2** Consider the following set of elements and apply selection sort : 23 56 77 88 99 135. How many comparisons and swaps are required?

Solution:

Final sorted list would be 23 56 77 88 99 135.

7.3 Compute the Euclidean distance for the following set of points.

Solution:

a)
$$(0,0)$$
 and $(7,8)$

$$d(p,q) = \sqrt{(0-7)^2 + (0-8)^2}$$

$$= \sqrt{49 + 67} = \sqrt{113} = 10.63$$
b) $(0,4)$ and $(8,9)$

$$d(p,q) = \sqrt{(0-8)^2 + (4-9)^2}$$

$$=\sqrt{64+35}=\sqrt{89}=9.43$$

7.4 Consider the five tasks with lengths 3, 4, 5, 7, 2. Consider a single server model and calculate optimal turn around time.

Solution:

Using the "Shortest job" first principle, the optimum schedule would be

7.5 Consider three items with weights and profits as below.

Item	Weight	Profit
1	3	10
2	4	4
3	5	8

If the Knapsack capacity is 15, list out some of the possible sequences.

Solution:

Profit				
{1}	10			
{2}	4			
{3}	8			
{1,2}	14 with weight 7.			
{1,3}	18 with weight 8.			
{2,3}	12 with weight 9.			
{1,2,3}	22 with weight 12 < 15.			

- : Maximum profit possible is 22.
- **7.6** Consider the following cost matrix for assigning three persons to three jobs. What is the possible optimal allotment?

	J_1	J_2	J_3
P_1	4	2	<u>6</u>
P_2	7	<u>8</u>	2
P ₃	<u>1</u>	1	3

Solution:

- : Maximum profit is 15.
- ∴ Optimal order { 3, 2, 1 }