

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

Chapter 6

6.1 Construct a BST for the following set of numbers.

 10, 6, 7, 12, 14, 43

Solution:

6.2 Construct a BST for the following set of names

 Arthi Christy Dorothy Fraser Eliza

Solution:

a) Insert a name ‘David’ into BST

Solution:

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

b) Delete the name Fraser from the BST

Solution:

6.3 Write a procedure to find maximum element in a BST

Solution:

 Algorithm BST-minimum(x)

 %% Input : x tree

 %% Output : minimum element

 Begin

 while left[x] ≠ Null do

 x ← left[x]

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

 end while

 return x

 End

6.4

a) Identify the following trees one BST’s or not

Solution: This is a BST

b) Check whether these trees are AVL trees or not. Compute the balance factor for

these trees.

Solution:

This is not AVL

Balance factor for 12 = 0

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

 for 3 = 1

 for 4 = 2

6.5 Construct a minimum-heap for the following set of numbers.

 6, 43, 76, 85, 100

Solution:

Step 1 : I

nsert the following numbers into minimum-heap tree

 3, 2, 1, 6, 4

6.6 Construct a binomial tree for 12 and 14 elements.

Solution :

Binomial tree for 12 elements would appear like this assuming the elements are

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

After inserting the element 13 and 14, the binomial tree would appear like

6.7 Write a procedure for melding binomial trees.

The procedure is given informally as follows for melding H1 and H2 like binary addition.

The number of Bj’s at location J [0,k] is

Step 0 : Location j of H is set to null.

Step 1 : Location of j of H points to Bj.

Step 2 : Two Bj’s are linked together to form Bj+1 which is stored as carry at

location j+1 of H, and location j is set to Nil.

Step 3 : The carry is stored at j+1 of H and 3
rd

 Bj is stored at location j.

6.8 Construct a binomial tree for 10 and 4 elements. Show that they can be melded.

Solution:

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

For 4 elements

For 10 elements

After merge

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

6.9 Write a procedure for decreasing key in F-heap.

Solution:

 Let Q be the heap

 key be key

 Algorithm decrease-key(u,key)

 Begin

 if key > V.key then

 return (0)

 else

 v.key = key

 update minimum element 0

 end if

 if v ∈ rootlist of heap or key ≥ v.parent.key then return(0)

 do

 parent = v.parent

 Q.cut(v)

 v = parent

 while v.mark and v  Q.rootlist

 if v  Q.rootlist then

 v.mark = true

 End

6.10 Construct a F-tree for 10 and 14 elements.

Solution:

Assuming 10 elements

 1, 14, 12, 22, 20, 30, 34, 62, 74

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

The F-tree would appear like this.

The 14 elements

 { 1, 2, 3, 14, 16, 18, 20, 24, 26, 28, 30, 14, 6, 3}

would appear like this

6.11 Construct a disjoint set for the following set of numbers.

Solution:

The disjoint set would be like this

Merge results in

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

6.12Write a procedure for performing merging by size and rank for disjoint set.

Solution:

The procedure for merging using size is given below:

Step 0 : Assuming disjoint sets are i, j.

 root 1 = find(i)

 root 2 = find(j)

Step 1 : If roots are not equal and if first tree I has more nodes than j then

 parent[root 1] = parent[root 1] + parent[root 2]

 parent[root 2] = root 1

else

 parent[root 2] = parent[root 2] + parent[root 1]

 parent[root 1] = root 2

endif

endif

Step 2 : End

 (ps: By rank is given in the book)

6.13 Design a binary counter and apply amortized analyzed to it.

Solution:

 The procedure for binary counter

 A[0] = A[0] + 1

 i = 0

 while [A(i) = 2] do

 A[i + 1] = A[i+1] + 1

 A[i] = 0

 end while

 End

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

A[0] flips in each increment

A[1] flips in every second increment (
n
2 times)

A[2] flips in every fourth increment (
n
4 times)

 ⋮

A[i] flips in every 2
i
 th increment

2i

n 
 
 



 

 

log

0

log

1

2

1

2

n

i
i

in

i

n
T n

n

n







 
   

 

 





6.14 Design a table that gets enlarged automatically when the size is violated. Apply

amortized analysis to it.

Solution:

Initially the table is null. The table would be enlarged when table space is not enough. i
th

operation causes in expansion only when i-1 is power of 2.


2

1
i

i if i is exact power of
C

otherwise


 




log

0

log

0

2

2

2

3

n
j

i

j

n
j

j

n

C n

n

n

n

  





 

 

 



 



 The amortized cost of  
3

3 1
n

n
  

This is the analysis using aggregate method.

 Sridhar: Design and Analysis of Algorithms

© Oxford University Press, All rights reserved.

