Chapter 4

- **4.1** Write the following recurrence equation for the following algorithms :
 - a) n^{th} power of a variable : T(n) = 1 + T(n-1)
 - **b)** Pentagonal numbers : T(1)=1, T(n)=T(n-1)+3n-2, $n \ge 2$
 - c) Quick Sort : T(n) = 2T
 - **d**) Selection Sort : T(n) = T(n-1)+1
 - e) Lucas numbers : T(n) = T(n-1) + T(n-2)
- T(0) = 1
- **4.2** Formulate and Solve the following recurrences
 - **a**) $t_n = t_{n-1} + 3$, $t_0 = 0$
 - :. when n=1 $t_1 = t_0 + 3 = 3$
 - $t_2 = t_1 + 3 = 6$
 - $t_3 = t_2 + 3 = 9$
 - \therefore The sequence is 0, 3, 6, 9, \cdots
 - Solution is $t_n = 3n$, for $n = 0,1,2,\cdots$
 - **b)** $t_n=2t_{n-1}+1, t_0=0$

$$t_1 = 2t_0 + 1 = 1$$

$$t_2 = 2t_1 + 1 = 3$$

$$t_3 = 2t_2 + 1 = 7$$

$$t_4 = 2t_3 + 1 = 15$$

So the sequence is $0,1,3,7,1.5,\cdots$

So guessed solution is 2n+1, for n = 0,1,2,...

c)
$$t_n = 3t_{n-1}+1, t_0=0$$

$$t_1 = 3t_0 + 1 = 1$$

$$t_2 = 3t_1 + 1 = 5$$

$$t_3 = 3t_2 + 1 = 10$$

$$t_4 = 3t_3 + 1 = 58$$

So the sequence is $0,1,5,10,58,\cdots$

d)
$$t_n = 2t_{n-1} + n^3, t_0 = 0$$

 $t_1 = 2t_0 + 1^3 = 1$
 $t_2 = 2t_1 + 2^3 = 10$

$$t_3 = 2t_2 + 3^3 = 20 + 37 = 47$$

$$t_4 = 2t_3 + 4^3 = 2 \times 47 + 64 = 158$$

So the sequence is 0,1,10,47,158

e)
$$t_n = 5t_{n-1} + n^2$$
, $t_0 = 0$
 $t_1 = 5t_0 + 1^2 = 1$
 $t_2 = 5t_1 + 1^2 = 9$
 $t_3 = 5t_2 + 1^2 = 45 + 9 = 54$
 $t_4 = 5t_3 + 1^2 = 5 \times 54 + 16 = 286$

So the sequence is 0,1,9,54,286

4.3 Solve the following 1st order equation using substitution method.

a)
$$t_n$$
-4 t_n -1 = 0

$$t_n = 4t_{n-1}$$

= $4[4(t_{n-2})] = 4^2t_{n-2}$

$$=4[4(4t_{n-3})]=4^3t_{n-3}$$

$$=4^4t_{n-4}$$

∴ In general

$$t_n = 4^{n-i} \times t_{n-1}$$

when I = (n-1), the solution would become like this

$$t_n = 4^{n-(n-1)} \times t_{n-1}$$

$$t_n = 4 \times t_{n-1}$$

4.4 Solve the following recurrence equations using the difference method :

a)
$$t_n - t_{n-1} = 7$$

$$t_0 = 1$$

$$t_n - t_{n-1} = 7$$

$$t_{n-1} - t_{n-2} = 7$$

$$t_{n-2} - t_{n-3} = 7$$

:

$$t_2 - t_{n-1} = 7$$

There are (n-1) equations

$$\therefore t_n - t_1 = 7(n-1)$$

$$t_n = t_1 + 7(n-1)$$

$$= 1 + 7n - 7 = 7n - 6$$

b)
$$t_n - t_{n-1} = 3$$

Based on the previous problem, one can find

$$t_n = t_1 + 3(n-1)$$

$$= 1 + 3n-3$$

$$= 3n-2$$

4.5 Solve the following problems using recurrence tree.

a)
$$T(n) = 2T(n-1) + 1$$
 and compare this with $T(n) = 2T(n-1) + n$

Hint: At every stage 1 is divided into two leaves and this continues till it becomes

1.
$$\sum_{i=1}^{n} 2^{i} = 2^{n} - 1 = O(2^{n})$$

b)
$$T(n) = T(\frac{n}{2}) + 1$$
 Compare this with the tree $T(\frac{n}{2}) + n$

Hint: At every stage 1 is divided to two leaves as n/2 and this continues till it becomes 1. This is $O(\log n)$

$$\mathbf{c)} \quad T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

Hint: At every stage the problem is divided into 4 sub-problems and every time n is divided by 2 and each call requires n^2 . Therefore, the algorithm is $\theta(n^2 \log n)$.

$$\mathbf{d)} \quad T(n) = 3T\left(\frac{n}{2}\right) + n$$

Hint: At every stage the problem is divided into 3 sub-problems and every time n is divided by 2 and each call requires n^2 . Therefore, the algorithm is $\theta(n^2 \log n)$.

$$\sum_{i=0}^{\log n - 1} \left(\frac{3}{2}\right)^i = n^{\log 3} - 1$$

4.6 Solve the following second order equation

a)
$$t_n - 7t_{n-1} + 12t_{n-2}$$
 for $n = 0$

$$t_0 = 0$$

$$t_1 = 1$$

Solution:

$$r^{2} - 7r + 12 = 0$$

$$= \frac{+7 \pm \sqrt{49 - 4(1)(12)}}{2(1)}$$

$$= \frac{+7 \pm \sqrt{49 - 48}}{2} = \frac{+7 + 1}{2}, \frac{+7 - 1}{2}$$

$$= +3, +4$$

$$\therefore t_n = c_1 3^n + c_2 4^n$$

When
$$n = 0$$
, $t_0 = c_1 + c_2$

When
$$n = 1$$
 $t_1 = 3c_1 + 4c_2$

Solving this one get

$$c_1 + c_2 = 0$$

$$3c_1 + 4c_2 = 1$$

eqn
$$1 \times 3$$

$$3c_1 + 3c_2 = 0$$

$$3c_1 + 4c_2 = 1$$

 $c_2 = 1$

$$\therefore c_2 = 1, \ c_1 = -1$$

Substituting this, one gets the equation

$$t_n = (-1)3^n + 4^n$$

b) $t_n - 3t_{n-1} - 4t_{n-2} = 0$, $t_0 = 0$, $t_1 = 1$

Solution:

$$r^3 - 3r - 4 = 0$$

$$r = 4, -1$$

$$\therefore t_n = c_1 4^n + c_2 (-1)^n$$

Substituting the initial conditions, one get

$$t_0 = c_1 4^n + c_2 (-1)^n$$

$$t_1 = 4c_1 - c_2 = 1$$

Solving one get $c_1 = \frac{1}{5}, c_2 = \frac{-1}{5}$

$$\therefore t(n) = \frac{1}{5}(4)^n - \frac{1}{5}(-1)^n$$

c)
$$t_n - t_{n-1} - 6t_{n-2} = 0$$
, $t_0 = 1$, $t_1 = 1$

Solution:

$$r^3 - r - 6 = 0$$

$$(r-3)(r+2) = 0$$
, $\therefore r = 3, -2$

$$\therefore t_n = c_1(3)^n + c_2(-2)^n$$

Substituting the initial conditions one gets

$$t_0 = c_1 + c_2$$
: $c_1 + c_2 = 1$

$$t_1 = 3c_1 - 2c_2$$
: $3c_1 - 2c_2 = 1$

Solving one get

$$3c_1 + 3c_2 = 1$$

$$3c_1 - 2c_2 = 1$$

$$5c_2 = 1 \implies c_2 = \frac{1}{5}$$

$$\therefore c_1 = \frac{4}{5}$$

Substituting, one get

$$t(n) = \left(\frac{4}{5}\right)3^n + \left(\frac{1}{5}\right)\left(-2\right)^n$$

4.7 Solve the following higher order recurrence equations.

a)
$$t_n - 3t_{n-1} + t_{n-2} - 3t_{n-3} = 0$$

$$t_0 = 0$$
; $t_1 = 1$; $t_2 = 1$

Solution:

$$r^3 - 3r^2 - r - 3 = 0$$

$$r = 3, 1, -1$$

$$\therefore t_n = c_1 3^n + c_2 1^n + c_3 (-1)^n$$

Substituting one get

$$t_0 = c_1 + c_2 + c_3$$

$$t_1 = 3c_1 + c_2 + c_3$$

$$t_2 = 9c_1 + c_2 + 2c_3$$

$$\therefore$$
 $c_1 = \frac{-1}{2}, c_2 = \frac{1}{4}, c_3 = \frac{3}{2}$

Hence the general solution is $t_n = \left(\frac{-1}{4}\right)3^n + \frac{1}{4}(1)^n + \frac{3}{2}(1)^n$

b)
$$t_n - t_{n-1} + 2t_{n-2} - 6t_{n-3} = 0$$

$$t_0 = 0$$
; $t_1 = 1$; $t_2 = 1$

Solution:

$$r^3 - r^2 + 2r + 6 = 0$$

4.8 Solve the following non-homogeneous equations

a)
$$t_n - 3t_{n-1} = 4^n (2n+1)$$
 for $n > 1$
 $t_0 = 0$; $t_1 = 12$

Homogeneous part

$$r - 3 = 0$$

$$\therefore r = 3$$

Non-homogeneous part

$$b^n(p(n))k \Longrightarrow 4^n(2n+1)$$

$$\implies (r-b)^{k+1}$$

$$=(r-4)^2$$

$$\therefore r = 4, 4$$

$$\therefore t_n = c_1 3^n + c_2 4^n + c_3 n 4^n.$$

b)
$$t_n - 5t_{n-1} + 7t_{n-2} - 3t_{n-3} = 1$$
, $n > 2$

$$t_0 = 1$$
; $t_1 = 2$; $t_2 = 3$

Solution:

Homogeneous part:

$$r^3 - 5r^2 + 7r - 3 = 1$$

$$\therefore r = 1, 1, 3$$

Non-homogeneous part:

$$b^n(p(n))k \Longrightarrow 1^0$$

$$(r-1)^{0+1} = (r-1) = r=1$$
.

The general solution is

$$\therefore t_n = c_1 3^n + c_2 1^n + c_3 n \times 1^n + c_4 n^2 1^n$$

Substituting the critical condition, one get

$$c_1 + c_2 = 1$$

$$3c_1 + c_2 + c_3 + c_4 = 2$$

The 3rd initial condition

$$t_3 = 5$$

Solving one gets

$$c_1 = 2.125$$

$$c_2 = -1.125$$

$$c_3 = 1$$

$$c_4 = -4.25$$

$$\therefore t_n = 2.125 \times 3^n + (-1.125) \times 1^n + 1 \times n \times 1^n + (-4.25)n^2 \times 1^n$$

$$t_n = 2.125 \times 3^n - 1.125 + n - 4.25n^2$$

4.9 Solve the following recurrence equations using generating functions.

a)
$$t_n - 4t_{n-1} = 0$$
 ; $t_0 = 1$

Solution:

Based on the problem (4.27), one can find

$$G(z) = \frac{1}{(1-4z)}$$

$$\Rightarrow 1(1+4z+(4z)^2+\cdots)$$

$$= 1\times 4^n$$

$$= 4^n$$

4.10 Write a recursive program for Fibonacci and solve it using generating functions.

$$F_n = \tfrac{\phi^n - \psi^n}{\sqrt{5}} = \tfrac{1}{\sqrt{5}} \left[\left(\tfrac{1+\sqrt{5}}{2} \right)^n - \left(\tfrac{1-\sqrt{5}}{2} \right)^n \right].$$
 Hint:

- **4.11** Convert the following sequence to generating functions.
 - a) 4^n

The sequence is $\{4, 16, 64, \dots\}$

Based on problem 4.25, one can find

$$G(z) = \frac{1}{(1-4z)}$$

b) 2ⁿ

Based on the preview problem, one can find that

$$G(z) = \frac{1}{(1-2z)}$$

- **4.12** Convert the following functions to partial functions
 - a) $\frac{x}{x^2 + 6x + 9}$
 - **b**) $\frac{x-1}{x^2+10x+25}$

[Hint] For both these problems, there are double roots and hence partial fraction is difficult.

- **4.13** Verify the following functions are smooth or not
 - a) $n \log n$

Smooth function

b) *x*

Smooth function

4.14 Solve the following recurrence equations using domain and range transformation

$$\mathbf{a)} \ \ \mathbf{T}(n) = \mathbf{T}(\sqrt{n}) + n$$

b)
$$T(n) = T^3(\sqrt{n}) + n$$

4.15 For the principal amount \$100, if the compound interest is given by a bank is 3%. What would be recurrence equation? Find the solution of the recurrence equation. *Solution:*

Based on problem 4.11, one can find that the recurrence equation is $t_n = 1.03t_{n-1}$ and its solution is

$$t_n = (1.03)t_0$$
.

4.16 Solve the following recurrence equation

$$t_n - 5t_{n-1} + 15t_{n-2} = 0$$

with initial conditions $t_0 = 0$, $t_1 = 1$ and $t_2 = 2$.

Solution:

$$r^{2} - 5r + 15 = 0$$

$$= \frac{+5 \pm \sqrt{25 - 60}}{2}$$

$$= \frac{+5 \pm \sqrt{-35}}{2}$$

The roots are complex

And the general solution is

$$t_n = c_1 \left(\frac{5+5.9i}{2}\right)^n + c_2 \left(\frac{5-5.9i}{2}\right)^n$$

Solving this, we get

$$c_1 + c_2 = 0$$

$$c_1\left(\frac{5+5.9i}{2}\right)+c_2\left(\frac{5-5.9i}{2}\right)=1$$

Multiply equation (1) by $\left(\frac{5+5.9i}{2}\right)$

$$c_1 \left(\frac{5+5.9i}{2} \right) + c_2 \left(\frac{5+5.9i}{2} \right) = 0$$

$$c_1\left(\frac{5+5.9i}{2}\right)+c_2\left(\frac{5-5.9i}{2}\right)=1$$

Subtract (2) from (1), we get

$$c_2\left(\frac{5+5.9i}{2}\right) - c_2\left(\frac{5-5.9i}{2}\right) = 1$$

$$\frac{5-5+5.9i+5.9i}{2}c_2 = 1$$

$$11.8ic_2 = 2$$

$$c_2 = \frac{2}{11.8i}$$

$$\therefore c_1 = \frac{-2}{11.8i}$$

$$\therefore t_n = \left(\frac{-2}{11.8i}\right) \left(\frac{5+5.9i}{2}\right)^n + \left(\frac{2}{11.8i}\right) \left(\frac{5-5.9i}{2}\right)^n$$

4.17 Use the simplified and generalized master theorem and solve the following:

a)
$$T(n) = T(\frac{n}{2}) + 1$$
 Compare this with $T(n) = T(\frac{n}{2}) + c \times n^k$

Here
$$a = 1$$
, $b = 2$, $c = 1$ and $k = 0$

As
$$a = b^k$$
,

$$T(n) = \theta(n^k \log n)$$
$$= \theta(\log n).$$

b)
$$T(n) = 8T(\frac{n}{2}) + 10n^2$$
 , $T(0) = 0$

Using little master theorem

$$a = 8, b = 2, k = 2$$

As
$$a > b^d$$
,

$$\theta\left(n^{\log_2 8}\right) = \theta\left(n^3\right)$$

Using master theorem

$$T(n) = 8T\left(\frac{n}{2}\right) + 10n^2$$
, $T(0) = 0$

as $a < b^k$

$$\therefore T(n) = \theta(n^{\log_2 8}) = \theta(n^3)$$

Note: one can note

$$T(n) = \begin{cases} \theta(n^{k}) & \text{if } a < b^{k} \\ \theta(n^{k} \log n) & \text{if } a = b^{k} \\ \theta(n^{\log_{b} a}) & \text{if } a > b^{k} \end{cases}$$

c)
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$
 , $T(0) = 0$

Using little master theorem

$$a = 8, b = 2 \text{ and } k = 2$$

As
$$a > b^k$$
,

$$\theta(n^{\log_2 3})$$

Using master theorem

$$T(n) = \theta\left(n^{\log_2 a}\right) = \theta\left(n^{\log_2 3}\right)$$

$$\mathbf{d)} \quad T(n) = T\left(\frac{n}{2}\right) + (n-1)$$

$$a = 1, b = 2, k = 1$$

$$\therefore a < b^k$$
,

$$T(n) = \theta(n)$$

$$e) \quad T(n) = 2T\left(\frac{n}{2}\right) + n^2$$

$$a = 2, b = 2, k = 2$$

$$a < b^k$$
,

$$\theta(n^2)$$
.

Using master theorem

$$f(n) = \theta(n^{\log_2 2} \times n)$$
$$= \theta(n \times n)$$
$$= \theta(n^2)$$

$$T(n) = \theta(f(n)) = \theta(n^2)$$

$$\mathbf{f}) \quad T(n) = T\left(\frac{n}{2}\right) + 1 \quad , \quad T(0) = 0$$

Solution:

$$a = 7, b = 2, k = 0$$

$$a>b^k$$
.

$$\therefore = \theta \left(n^{\log_2 7} \right)$$

Using master theorem,

$$f(n) = n^{\log_2 \frac{7}{nt}}$$
$$= \theta(n^{2.8-2.8}) = \theta(n^0)$$

$$T(n) = \theta(n^{\log_2 7})$$

$$\mathbf{g}) \quad T\left(n\right) = 4T\left(\frac{n}{3}\right) + 1$$

$$a = 4, b = 3, k = 0$$

$$a>b^k$$
,

$$\therefore \theta \left(n^{\log_b a} \right)$$

$$=\theta\left(n^{\log_3 4}\right)$$

$$\mathbf{h)} \quad T(n) = T\left(\frac{n}{2}\right) + n$$

$$a = 4, b = 3, k = 0$$

$$a < b^k$$
,

$$\therefore \theta(n^k) = \theta(n)$$

$$\mathbf{i)} \quad T(n) = 7T\left(\frac{n}{2}\right) + 18\left(\frac{n}{2}\right)^2$$

Solution:

This is Stassen's multiplication algorithm

$$7 > 2^2$$

$$\therefore \theta \left(n^{\log_2 7} \right)$$

$$\mathbf{j}) \quad T(n) = 3T\left(\frac{n}{3}\right) + n$$

Solution:

Using little master theorem

$$a = 4, b = 3, k = 0$$

$$a = b$$
,

$$T(n) = \theta(n \log n)$$

Using master theorem

$$f(n) = \theta(n^{\log_3 3})$$

$$=\theta(\log n)$$

$$\mathbf{k}) \quad T(n) = 2T\left(\frac{n}{2}\right) + (n-1)$$

Solution:

$$a=2=b^k$$

$$\therefore \theta \Big(n^1 \log n \Big)$$

$$=\theta(n\log n)$$

(This is merge sort and closest pair algorithm)

1)
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

$$a = 3, b = 2, k = 1$$

$$3 > 2^1$$

$$\therefore T(n) = \theta\left(n^{\log_2 3}\right)$$

$$\mathbf{m)} \ T(n) = 4T\left(\frac{n}{9}\right) + 5\sqrt{n}$$

$$a = 4, b = 9, k = \frac{1}{2}$$

$$a > 9^{1/2} = 3$$

$$\therefore T(n) = \theta(\sqrt{n}\log n)$$

$$\mathbf{n}) \quad T(n) = 4T\left(\frac{n}{2}\right) + n\log n$$

$$a = 4, b = 2, k = 1$$

$$a>b^k$$

$$T(n) = \theta(n \log n)$$

$$\mathbf{o)} \quad T(n) = 3T\left(\frac{n}{4}\right) + n$$

$$a = 3, b = 4, k = 1$$

$$a < b^k$$

$$\therefore T(n) = \theta(n^k) = \theta(n)$$

4.18 Solve the recurrence equation

$$t_n - 3t_{n-1} = 2^n$$

Solution:

Homogeneous part:

$$r - 3 = 0$$

$$\therefore r = 3$$

Non-homogeneous part

$$b^{n}(p(n))^{k} = (r-2)^{1}$$

$$= r = 2$$

$$\therefore t(n) = c_1 3^n + c_2 2^n$$

Assuming $t_0 = 0$, $t_1 = 1$, we get

$$c_1 + c_2 = 0$$

$$3c_1 + 2c_2 = 0$$

On solving we get

$$3c_1 + 3c_2 = 0$$

$$3c_1 + 2c_2 = 0$$

$$\therefore c_2 = -1 \quad \text{and } c_1 = 1$$

$$\therefore t(n) = 3^n - 2^n.$$

4.19 Solve the recurrence equation

$$T(n) = 7T\left(\left\lfloor \frac{n}{4} \right\rfloor\right)$$
 where $T(1) = 1$

Solution:

This is problem 4.34.

So the answer is

$$T(n) = 7^{\log n}$$
$$= n^{\log 7}$$
$$= n^{3.81}$$