
 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

Chapter 3 

3.1 An algorithm of order Ο(n
2
) takes 5 seconds to compute answers for an input instance 

size n = 10. If the algorithm size is increased to 50, how much time will it take? 

Solution: 

C(10
2
) = 5 

2

5

10
C   

If the algorithm size is increased to 50, then, C(50
2
) =  x 

2

2

5 5
50 2500 125

10010
x Seconds       

3.2 Write algorithm for the following problems. Use step count and operation count for 

finding run time. 

a) Matrix addition 

The base code is given as follows:      step         frequency    step X frequency 

for i = 1 to n do                                       1              n+1            n+1 

  for j = 1 to n do                                     1              n+1            n(n+1)   

       c[i,j] = a[i,j] + b[i,j]                          1             n(n+1)        n   n  

  end for                                                   -                 -                 --- 

end for                                                     --              ---                ---- 

                                                          Step Count =  (n+1)+n(n+1)+ 2n  

                                                                        =  n+1+ 2n +n+ 2n = 2 2n +2n+1 

                                                                        = O(n). 

One can analyze this segment using operation count also. The  

Operation Count=
1 1

( 1)
1

2

n n

i i

n n

 


 .  

Therefore, the asymptotic complexity analysis is 2( ).O n  

b) Matrix multiplication 

The base code is given as follows:      step         frequency    step X frequency 

for i = 1 to n do                                       1              n+1            n+1 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

  for j = 1 to n do                                     1              n+1            n(n+1)   

       for k = 1 to n do                                1             n+1            n(n+1)(n+1)  

       c[i,j] = c[i,j]+ a[i,k] * b[k,j]               1             n(n+1)        n X n X n 

  end for                                                   -                 -                 --- 

end for                                                     --              ---                ---- 

∴Step count = (n+1)+ n(n+1) + n(n+1)(n+1)+ n × n × n=  3 22 3 3 1n n n    = 3( )O n  

One can analyze this segment using operation count also. The  

Operation Count= 3

1 1 1

1 ( )
n n n

i i i

O n
  

 . 

Therefore, the asymptotic complexity analysis is 3( ).O n  

 

c) Matrix norm 

Hint: It can be observed that matrix norm is O( 2n )  

d) Summation of an array 

 Steps 

Algorithm sum(n) – 

     Sum = 0 1 

      for i = 1 to n  do n+1 

          Sum = sum + n(i) n 

      end for – 

End       – 

∴ Step count = 2n+2 = O(n). 

One can analyze this segment using operation count also. The  

Operation Count=
1

n

i

i n


 . Therefore, the asymptotic complexity analysis is 2( ).O n  

 

3.3 Let us say that an algorithm takes 6 seconds for an input size n =10. How much time will 

it take when n = 100, if the algorithm run-time is as follows: 

a) n
3
 

 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

C (10
3
) = 6 

 

3

3

3

6

10

100

6
100

1000

600

C

C x

x

Seconds





 



  

b) log n 

 2

2

log 10 6

6

log 10

C

C




 

 

 

2

2

2

log 100

6
log 100

log 10

12

C x

x

Seconds



 



 

3.4 Let two algorithms take the following values : 

 

 

3

22

A n

B n

n

n

 

 
 

What is the cut-off or break point where algorithms deviate? 

 

 

∴  Cut-off point is after 2. 

3.5 Use the limit rule to check that n2
n
 is in Ο(4

n
). 

n n
3
 2n

2
 

1 1 2 

2 8 8 

3 27 18 

4 64 32 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

 

  2

2
lim lim 0

2

n

n

t n n

g n
   

∴n2
n
 is in Ο(4

n
). 

3.6 Prove that  n n    

∴
 

 
lim 1 0

t n n

g n n
    

∴n∈θ(n). 

3.7 Prove that all logarithmic functions grow at slow rate. 

The slowest growing function is logarithmic function. Therefore, all logarithmic 

functions grow at equal rates. 

3.8 Differentiate between the following notations. 

a) θ and Ο 

 θ: average case 

 Ο: worst case (asymptotically bounded by a function from above) 

b) Ο and Ω 

Ω is asymptotically bounded by a function from below. 

3.9 What is the asymptotic notation for the following polynomial? 

t(n) = 6n
2
 + 100 

Solution:  

              Ο(n
2
) 

3.10 Prove the following; 

a) 3 logn n  is in  3n  

3

3

1
log

lim lim 0
n n n

nn
   

∴  3 logn n  is in  3n  

b) 2
n-4

 is in 2
n
 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

4

4

2 1
lim lim

2 2

1 1
lim

16 16

n

n





 

 

∴  2
n-4

 is in 2
n
 

3.11 Prove the following 

a) 4 log 17n n   is  4n  

By adding rule 

 4max( , log ,17)n n  

 4n   

 

b)   3 1T n n   

By adding rule 

 3max( ,1)n  

   3 2n n     

c)   25 15T n n n   

 

 

2

2

5 15
lim

t n n n

g n n


  

2

2

5
5

n

n
   

∴   Ω(n
2
). 

3.12 Find suitable notations for the following sequence. 

a) 
1

n

i

i


  

Solution:  



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

1

n

i

i



 = 

 
 21

2

n n
n


  

b) 
2

1

n

i

i


  

Solution: 

2

1

n

i

i



=

  1 2 1

2

n n n 
 

           ≈  Ο(n
3
) 

c) 
3

1

n

i

n


  

Solution: 

3

1

n

i

n



 

22 1

4

n n 
  

 2 2 2 1

4

n n n 
  

4 3 22

4

n n n 
  

≈  4n  

d) 
1

1n

i i

  

Solution: 

Ο(log n)  

e) 
1

2

n

i

i




  

Solution: 

         θ(n) 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

f) 
1

7
n

i

i

  

Solution: 

17 1

7

n 
  

17 7

7

n 
  

 
 

   17 7n n    

g)  
1

7
n

i

i i


  

Solution: 

 

         = Ο(n
2
). 

h) 
1 1 1

n n n

i j k

ijk
  

  

Solution: 

 

 
33 1

8

n n 
  

 3 3 21 3 3

8

n n n n  
  

6 5 4 33 3

8

n n n n  
  

 Ο(n
6
).  

i) 
2

1

1n

i i i 


 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

Solution: 

 log n   

3.13 What is the time complexity of the following algorithm segments using step count and 

operation count? 

a)  

 Frequency C Cx Frequency 

k = 1 1 1 1 

  while k≤n n 1 n 

k=k+1 n 1 n 

  End while 0 0 0 

   2n+1 

∴ Step count = 2n+ 1= Ο(n). 

One can analyze this segment using operation count also. The  

Operation Count=  
1

n

i

i


  = O(n). 

Therefore, the asymptotic complexity analysis is ( ).O n  

 

b)  

 

 

  

 

 

 

 

∴Step count=  22 3n n  = Ο(n
2
). 

One can analyze this segment using operation count also. The  

 Frequency C Cx frequency 

for i=1 to n-1 do N 1 N 

  for j=i+1 to n do n(n+1) 1 n(n+1) 

     swap n(n+1) 1 n(n+1) 

  End for – – – 

End for – – – 

   n(n+1)+ n(n+1)+n 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

Operation Count=   2

1 1

1
n n

n    

Therefore, the asymptotic complexity analysis is  2n . 

 

3.14 Show that the running time of an quadratic algorithm nearly doubles as input size 

becomes larger. 

Solution: 

Let ‘n’ be the input and doubles it to 2n.   

∴
2n

n
=2 

This is true for doubling of the input size.               

3.15 Let two algorithms be A and B. The complexity functions of algorithms A and B are as 

follows. 

4

100n
A

B

T

T n




 

Which function grows faster as n→∞? What is the relationship between these functions? 

Solution: 

         100
n
 grows faster 

TA  is exponential and  

TB  is polynomial algorithm. 

3.16 Show that  3 2 logn n n n    

Solution: 

Using additive low 

  
 

3 2

3

max , , logn n n n

n

 

 
 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

3.17 Show that   log log !n n n  

Solution: 

 
 

log

log

nn

n



¦
 

3.18 Given that 

T1(n) = Ο(f(n)) 

T2(n) = Ο(g(n)) 

Solution : 

   T1(n)T2(n) 

         = Ο(f(n),g(n)) 

         = Ο(max(f(n),g(n))) 

3.19 Find the θ rotation for each of the following functions. 

a) 1 12 4n n    

Solution:  

     

 

2
4 4 2 4

2

4

n
n n n

n

 



  



 

b) (n
2
+6)

8
 

Solution:    
8

2 16n n¦  

c) 7logn + 10n
3
 

Solution:  θ(n
3
) 

3.20 Order the following rotations: 

logn,  n
2n

, n!, n  

Solution:  logn, n , n
2n

, n! 

3.21 Consider the following segment. Apply step count method and analyze the algorithm 

segment. 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

 Step frequency Stepfrequency 

Algorithm sum()    

Begin –   

sum=0.0 1 1 1 

  For i=1 to n do 1 n+1 n+1 

    val=2i 1 n n 

     sum=sum+i 1 n n 

  End for    

  return sum 1 1 1 

End    

   3n+3 

∴ step count = 3n + 3 = O(n). 

One can analyze this segment using operation count also. The  

Operation Count=   
1

1
n

n   

Therefore, the asymptotic complexity analysis is  O(n). 

3.22 Perform the complexity analysis of the following algorithm segment that simply returns a 

value using step count. 

 

 

 

 

 

           Solution:  

 

 Step frequency Stepfrequency 

Algorithm sample() –   

Begin –   



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

  for i=1 to n 1 n+1 n+1 

    return i 1 n n 

  endfor – –  

end – –  

   2n+1 

∴ step count = 2n+1 = O(n). 

One can analyze this segment using operation count also. The  

Operation Count=   
1

1
n

n  . Therefore, the asymptotic complexity analysis is  

O(n). 

 

3.23 Perform the complexity analysis of the following segment that initialized a matrix to 

unity. Use step count. 

Solution:  

 Step frequency Stepfrequency 

Algorithm sample()    

Begin 
 

  

  for i=1 to n do 1 n+1 n+1 

  for j=1 to n do 1 (n+1)n n
2
+n 

  A(i,j)=0 1 (n+1)n n
2
+n 

End for – – – 

End for – – – 

end    

   2n
2
+3n+1 

 

∴ Step count = 2 22 3 1 ( )n n O n   . 

One can analyze this segment using operation count also. The  



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

Operation Count=  2

1 1

1
n n

i i

n
 

   . Therefore, the asymptotic complexity analysis is   

Ο(n
2
). 

  

3.24 Consider the following algorithm segment and perform complexity analysis using 

operation count. Consider all the operations of the algorithm segment. 

              Algorithm sample() 

              Begin 

                   for k = 1 to n-1 

                        for m = k+1 to n 

                             return m+1 

                        endfor   

                   endfor 

              End 

Solution: 

This problem is about applying operation count. The operation count for this segment 

would be equal to  

                                       

  

  

 

1 1 1

1 1 1

2

1 1 1

1 1

n n

k k k

n k

n n k

n

 

  

   

   

 

 

 

3.25 Consider the following segment, how many multiplication operations need to be done? 

              for i= 1 to 50 do 

                   for  j = 51 to 100 do 

A = BC 

                   end for 

              end for       



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

Solution: 

  The number of multiplication required is equal to 
100

1

1 100 .  

3.26 Let us assume that the algorithm analysis of an algorithm yields the summation as 

follows. 

 
1 1

1 1 1

3 6
n n n

i i i

T n
 

  

    

What is the resultant sum? 

Solution: 

It can be observed that  

11 1

3 3 3 6 6 6    ( 6 6 )
n

in times n times

n n n n
 

         

                   =(n-1)3-(n-1)(6n) 

                   =3n-3-6n
2
+6n 

                   =-6n
2
+3n-3 

3.27 Suppose an algorithm takes 8 seconds to run an algorithm on an input size n=12. 

Estimate the largest size that could be compute in 56 seconds. Assume the algorithm 

complexity is 

a) θ(n) 

Solution: 

cn = 8 

  12c = 8 


8 2

12 3
c    

2
56

3
x Seconds  


3

56 28 3 84
2

x       



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

n = 84 is the largest we can run. 

b) θ(n
2
) 

Solution: 

 

cn
2
 = 8 Seconds  

   224c = 8 


8

224
c   

8
56

224
x Seconds  

224
56

8
x    

             = 1568 Seconds. 

 

3.28 Let us assume that the given two algorithms are A and B. The complexity functions are 

given as follows: 

TA = n
2
 

TA = n + 2 

What is the breaking point? 

Solution: 

n
2
–n–2 =0 

           (n–2)(n+1) =0   

n = 2, –1 

 The cutoff value is 2 

3.29 Let  t(n) = 3n
3
+2n

2
+3. Prove that this is Ο(n

3
) 

Solution: 

The highest degree of the polynomial is 3. 

n n
2
 n+2 

0 0 0 

1 1 3 

2 4 6 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

        Ο(n
3
)  

3.30 Let t(n) = 9n
2
. Prove that the order is Ο(n

2
) 

   29n ≤cn
2
 

When c≥ 9, this conditions holds good. 

     9n
2∈ Ο(n

2
) 

3.31 Find the smallest threshold number for the polynomial 

              3n
2
 + 255 ≤ 4n

2
 

Solution:  

              4n
3
-3n

2
-255 = 0 

n
2
 = 255 

255 15.96 15n   ¦  

 Approximately the cut-off threshold is 16. 

or  

                            255 ≤ n2 

255 15.96 16n   ¦  

3.32 Prove that  

n∈ Ο(n
2
)  

Solution: 

n≤cn
2
 

This condition holds good for all c≥ 1. 

 This is in Ο(n
2
). 

3.33 Let  t(n) = 26n + 7n + 8. Prove that this is of the order of Ω(n
2
). 

Solution: 

              26n + 7n + 8 ≥cn
2
 

This holds good for c≥ 7 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

 This is in Ω(n
2
) . 

3.34 Prove that 2
n-1

 + n2
n∈ Ο(4

n
) 

Proof: 

1 1

1

1 2

1

2 2 2

2

2 2
0.

2

n n n

n

n n

n

n

n

 







  

 
 

 

4
n
 This holds good for all c This is Ο(4

n
).  

 

3.35 Consider the following segment. Apply step count method and analyze the algorithm 

segment. 

 

          Step 1: Algorithm evencount() 

          Step 2: Begin 

          Step 3: sum = 0.0 

          Step 4: for i = 1 to n do 

          Step 5:     if (i mod 2 == 0) then 

          Step 6:        sum = sum + i 

          Step 7:     End if 

          Step 8:  End for 

          Step 9: return(sum) 

          Step 10: End. 

Solution: 

          Step 1: Algorithm evencount()                Step    Freq              Total 

          Step 2: Begin                                             -           -                    -          

          Step 3: sum = 0.0                                      1           1                    1 

          Step 4: for i = 1 to n do                             1          n+1               n+1 

          Step 5:     if (i mod 2 == 0) then                1         n                     n 

          Step 6:        sum = sum + i 

          Step 7:     End if                                         -        -                      - 

          Step 8:  End for                                          -        -                      -        



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

          Step 9: return(sum)                                    1        1                     1 

          Step 10: End.                                             -        -                        -   

 

                  Therefore, the step count = 2n+3 = O(n) 

 

3.36 Perform the complexity analysis of the following algorithm segment that simply 

returns a value using step count. 

           Step 1: Algorithm countodd() 

           Step 2: Begin 

           Step 3: count = 0 

           Step 4: for i = 1 to n do 

           Step 5:      if (i mod 2 != 0) then 

           Step 6:         count = count + 1 

           Step 7  :     End if 

            Step 8 :   End for 

            Step 9: return(count) 

            Step 10: End. 

 

           Solution 

           Hint: Same as before O(n). 

 

3.37    Perform the complexity analysis of the following segment that initialize the diagonal 

of a matrix to unity. Use step count. 

              Step 1: Algorithm sample() 

              Step 2: Begin 

              Step 3: for i = 1 to n do  

              Step 4: for j = 1 to n do 

              Step 5:    if (i==j) then 

              Step 6:      A(i,j) = 1 

              Step 7:      End if 

          Step 8:   End for 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

          Step 9: End for 

          Step 10: End. 

 

     Solution 

 

Step 1: Algorithm sample()                      Step            Count          Total 

              Step 2: Begin                               -                    -                   - 

              Step 3: for i = 1 to n do               1                   n+1             n+1 

              Step 4: for j = 1 to n do               1                  (n+1)n         (n+1)n 

              Step 5:    if (i==j) then                 1                  n x n           n x n   

              Step 6:      A(i,j) = 1 

              Step 7:      End if                         -                       -                  - 

          Step 8:   End for                             -                        -                 - 

          Step 9: End for                              -                        -                   - 

          Step 10: End.                                -                         -                   - 

 

 Therefore, the step count =   2 2 2 2( 1) 2 2 1 ( )n n n n n n O n         

Therefore, the asymptotic complexity is  O( 2n ). 

 

3.38 Consider the following segment and perform complexity analysis using operation 

count. Consider the dominant operations of the algorithm segment. 

 

            Step 1:  Algorithm sample()                              step          count           Total 

            Step 2:  Begin                                                     -                   -                  - 

             Step 3:    for k = 1 to n do                                  1                n+1              n+1 

             Step 4:    for m = 1 to n do                                 1                n(n+1)          n(n+1) 

             Step 5:  return (k*m)                                         1                n x n              n x n 

             Step 6: End for                                                  --                 ---                    --- 

             Step 7: End for                                                  --                 ---                    --- 

             Step 8: End.                                                       --                ----                   --- 

 Therefore, step count = n+1+ 2n n + 2n  = 2( )O n . 



 
 Sridhar: Design and Analysis of Algorithms 

 
© Oxford University Press, All rights reserved. 

Therefore, the asymptotic complexity is O( 2n ). 

 


