Chapter 3

3.1 An algorithm of order $O(n^2)$ takes 5 seconds to compute answers for an input instance size n = 10. If the algorithm size is increased to 50, how much time will it take? *Solution:*

$$C(10^2) = 5$$

$$\therefore C = \frac{5}{10^2}$$

If the algorithm size is increased to 50, then, $C(50^2) = x$

$$\therefore x = \frac{5}{10^2} \times 50^2 = \frac{5}{100} \times 2500 = 125 \text{ Seconds}$$

- **3.2** Write algorithm for the following problems. Use step count and operation count for finding run time.
 - a) Matrix addition

The base code is given as follows: step frequency step X frequency for i = 1 to n do 1 n+1n+11 for j = 1 to n do n+1n(n+1)c[i,j] = a[i,j] + b[i,j]1 n(n+1) $n \times n$ end for end for

:. Step Count =
$$(n+1)+n(n+1)+ n^2$$

= $n+1+n^2+n+n^2=2 n^2+2n+1$
= $O(n)$.

One can analyze this segment using operation count also. The

Operation Count=
$$\sum_{i=1}^{n} \sum_{i=1}^{n} 1 = \frac{n(n+1)}{2}$$
.

Therefore, the asymptotic complexity analysis is $O(n^2)$.

b) Matrix multiplication

The base code is given as follows: step frequency step X frequency

$$for \ i=1 \ to \ n \ do \qquad \qquad 1 \qquad \qquad n+1 \qquad \qquad n+1$$

:Step count =
$$(n+1)+ n(n+1) + n(n+1)(n+1) + n \times n \times n = 2n^3 + 3n^2 + 3n + 1 = O(n^3)$$

One can analyze this segment using operation count also. The

Operation Count=
$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} 1 = O(n^3)$$
.

Therefore, the asymptotic complexity analysis is $O(n^3)$.

c) Matrix norm

Hint: It can be observed that matrix norm is $O(n^2)$

d) Summation of an array

Algorithm sum(n)

Sum = 0

for
$$i = 1$$
 to n do

Sum = sum + $n(i)$

end for

End

Steps

-

1

 $n+1$
 n

-

End

Step count = $2n+2 = O(n)$.

One can analyze this segment using operation count also. The

Operation Count= $\sum_{i=1}^{n} i = n$. Therefore, the asymptotic complexity analysis is $O(n^2)$.

- 3.3 Let us say that an algorithm takes 6 seconds for an input size n = 10. How much time will it take when n = 100, if the algorithm run-time is as follows:
 - **a**) n^{3}

$$C(10^3) = 6$$

$$C = \frac{6}{10^3}$$
$$C(100^3) = x$$
$$x = \frac{6}{1000} \times 100^3$$

$$= 600 Seconds$$

b) $\log n$

$$C(\log_2 10) = 6$$

$$C = \frac{6}{\log_2 10}$$

$$C(\log_2 100) = x$$

$$x = \frac{6}{\log_2 10} \times (\log_2 100)$$

$$= 12 Seconds$$

3.4 Let two algorithms take the following values :

$$\Gamma_{A(n)} = n^3$$

$$\Gamma_{B(n)} = 2n^2$$

What is the cut-off or break point where algorithms deviate?

n	n^3	$2n^2$
1	1	2
2	8	8
3	27	18
4	64	32

- \therefore Cut-off point is after 2.
- **3.5** Use the limit rule to check that $n2^n$ is in $O(4^n)$.

$$\lim \frac{t(n)}{g(n)} = \lim \frac{n2^n}{2^{2n}} \ge 0$$

$$\therefore n2^n$$
 is in $O(4^n)$.

3.6 Prove that $|n| = \theta(n)$

$$\therefore \lim \frac{t(n)}{g(n)} = \frac{n}{n} = 1 > 0$$

$$∴$$
n∈ $\theta(n)$.

3.7 Prove that all logarithmic functions grow at slow rate.

The slowest growing function is logarithmic function. Therefore, all logarithmic functions grow at equal rates.

- **3.8** Differentiate between the following notations.
 - a) θ and θ

 θ : average case

O: worst case (asymptotically bounded by a function from above)

b) 0 and Ω

 Ω is asymptotically bounded by a function from below.

3.9 What is the asymptotic notation for the following polynomial?

$$t(n) = 6n^2 + 100$$

Solution:

$$O(n^2)$$

- **3.10** Prove the following;
 - a) $n^3 \log n$ is in $O(n^3)$

$$\lim \frac{n^3 \log n}{n^3} = \lim \frac{\frac{1}{n}}{n} = 0$$

$$n^3 \log n$$
 is in $O(n^3)$

b) 2^{n-4} is in 2^n

$$\lim \frac{2^{n-4}}{2^n} = \lim \frac{1}{2^4}$$
$$= \lim \frac{1}{16} = \frac{1}{16}$$

$$\therefore 2^{n-4} \text{ is in } 2^n$$

- **3.11** Prove the following
 - **a)** $n^4 + \log n + 17$ is $O(n^4)$

By adding rule

$$O(\max(n^4, \log n, 17))$$

$$=O(n^4)$$

b) $T(n) = n^3 + 1$

By adding rule

$$O(\max(n^3, 1))$$

$$= O(n^3) \neq O(n^2)$$

c)
$$T(n) = 5n^2 + 15n$$

$$\lim \frac{t(n)}{g(n)} = \frac{5n^2 + 15n}{n^2}$$

$$=\frac{5n^2}{n^2}=5$$

$$\therefore \Omega(n^2).$$

3.12 Find suitable notations for the following sequence.

$$\mathbf{a)} \quad \sum_{i=1}^{n} i$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2)$$

b)
$$\sum_{i=1}^{n} i^2$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{2}$$

$$\approx O(n^{3})$$

$$\mathbf{c)} \quad \sum_{i=1}^{n} n^3$$

Solution:

$$\sum_{i=1}^{n} n^{3} = \frac{n^{2} (n+1)^{2}}{4}$$

$$= \frac{n^{2} (n^{2} + 2n + 1)}{4}$$

$$= \frac{n^{4} + 2n^{3} + n^{2}}{4}$$

$$\approx O(n^{4})$$

$$\mathbf{d)} \quad \sum_{i=1}^{n} \frac{1}{i}$$

Solution:

O(log n)

$$\mathbf{e)} \quad \sum_{i=2}^{n+1} i$$

Solution:

 $\theta(n)$

f)
$$\sum_{i=1}^{n} 7^{i}$$

$$= \frac{7^{n+1} - 1}{7}$$

$$= O\left(\frac{7^{n+1} - 7}{7}\right)$$

$$= O\left(7^{n+1}\right) = O\left(7^n\right)$$

$$\mathbf{g}) \quad \sum_{i=1}^{n} i \left(i + 7 \right)$$

Solution:

$$= O(n^2).$$

$$\mathbf{h)} \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} ijk$$

$$= \frac{n^3 (n+1)^3}{8}$$

$$= \frac{n^3 (n^3 + 1 + 3n^2 + 3n)}{8}$$

$$= \frac{n^6 + 3n^5 + 3n^4 + n^3}{8}$$

$$f O(n^6).$$

$$\mathbf{i)} \quad \sum_{i=1}^{n} \frac{1}{i+i^2}$$

$$= O(\log n)$$

3.13 What is the time complexity of the following algorithm segments using step count and operation count?

a)

	Frequency	C	Cx Frequency
k = 1	1	1	1
while <i>k</i> ≤ <i>n</i>	n	1	n
k=k+1	n	1	n
End while	0	0	0
			2 <i>n</i> +1
		1	0()

∴ Step count =
$$2n+1=O(n)$$
.

One can analyze this segment using operation count also. The

Operation Count=
$$\sum_{i=1}^{n} i = O(n)$$
.

Therefore, the asymptotic complexity analysis is O(n).

b)

Frequency C Cx frequency for
$$i=1$$
 to $n-1$ do N 1 N

f for $j=i+1$ to n do $n(n+1)$ 1 $n(n+1)$

swap $n(n+1)$ 1 $n(n+1)$

End for $-$

End for $n(n+1)+n(n+1)+n$

∴Step count=
$$2n^2 + 3n = O(n^2)$$
.

One can analyze this segment using operation count also. The

Operation Count=
$$\sum_{1}^{n} \sum_{1}^{n} 1 = O(n^2)$$

Therefore, the asymptotic complexity analysis is $O(n^2)$.

3.14 Show that the running time of an quadratic algorithm nearly doubles as input size becomes larger.

Solution:

Let 'n' be the input and doubles it to 2n.

$$\therefore \frac{2n}{n} = 2$$

This is true for doubling of the input size.

3.15 Let two algorithms be A and B. The complexity functions of algorithms A and B are as follows.

$$T_A = 100^n$$

$$T_B = n^4$$

Which function grows faster as $n \rightarrow \infty$? What is the relationship between these functions?

Solution:

100ⁿ grows faster

 $T_{A}\ is\ exponential\ and$

 T_{B} is polynomial algorithm.

3.16 Show that $O(n^3 + n^2 + n \log n)$

Solution:

Using additive low

$$= O\left(\max\left(n^3, n^2, n\log n\right)\right)$$
$$= O\left(n^3\right)$$

3.17 Show that $n \log n \in \theta(\log(n!))$

Solution:

$$O(\log n^n)$$
 $O(\log n)$

3.18 Given that

$$T_1(n) = O(f(n))$$

$$T_2(n) = O(g(n))$$

Solution:

$$T_1(n) \times T_2(n)$$

$$= O(f(n), g(n))$$

$$= O(\max(f(n), g(n)))$$

- **3.19** Find the θ rotation for each of the following functions.
 - a) $2^{n-1} + 4^{n+1}$

Solution:

$$\frac{2^{n}}{2} + 4(4^{n}) \in \theta(2^{n}) + \theta(4^{n})$$
$$= \theta(4^{n})$$

b)
$$(n^2+6)^8$$

Solution:
$$(n^2)^8 \mid \theta(n^{16})$$

c)
$$7\log n + 10n^3$$

Solution:
$$\theta(n^3)$$

3.20 Order the following rotations:

$$\log n, \ n^{2n}, n!, \ \sqrt{n}$$

Solution:
$$\log n$$
, \sqrt{n} , n^{2n} , $n!$

3.21 Consider the following segment. Apply step count method and analyze the algorithm segment.

Step frequency Step×frequency

Algorithm sum())
-----------------	---

Begin	_		
sum=0.0	1	1	1
For $i=1$ to n do	1	<i>n</i> +1	n+1
$val=2 \times i$	1	n	n
sum=sum+i	1	n	n
End for			
return sum	1	1	1
End			
		_	3 <i>n</i> +3

 $\therefore \text{ step count} = 3n + 3 = 0(n).$

One can analyze this segment using operation count also. The

Operation Count=
$$\sum_{1}^{n} 1 = O(n)$$

Therefore, the asymptotic complexity analysis is O(n).

3.22 Perform the complexity analysis of the following algorithm segment that simply returns a value using step count.

Solution:

 \therefore step count = 2n+1 = O(n).

One can analyze this segment using operation count also. The

Operation Count= $\sum_{1}^{n} 1 = O(n)$. Therefore, the asymptotic complexity analysis is O(n).

3.23 Perform the complexity analysis of the following segment that initialized a matrix to unity. Use step count.

Solution:

Step frequency Step×frequency

Begin

Algorithm sample()

for
$$i=1$$
 to n do 1 $n+1$ $n+1$

for $j=1$ to n do 1 $(n+1)n$ n^2+n

A(i,j)=0 1 $(n+1)n$ n^2+n

End for $-$

End for $-$

end

 $2n^2+3n+1$

 $\therefore \text{Step count} = 2n^2 + 3n + 1 = O(n^2).$

One can analyze this segment using operation count also. The

Operation Count= $\sum_{i=1}^n \sum_{i=1}^n 1 = O(n^2)$. Therefore, the asymptotic complexity analysis is $O(n^2)$.

3.24 Consider the following algorithm segment and perform complexity analysis using operation count. Consider all the operations of the algorithm segment.

Algorithm sample()

Begin

for k = 1 to n-1for m = k+1 to n

return m+1

endfor

endfor

End

Solution:

This problem is about applying operation count. The operation count for this segment would be equal to

$$\sum_{k=1}^{n-1} \sum_{k=1}^{1} 1 = \sum_{k=1}^{n-1} (n - (k+1) + 1)$$
$$= n(n - (k+1) + 1)$$
$$= O(n^{2})$$

3.25 Consider the following segment, how many multiplication operations need to be done?

for i=1 to 50 do

for
$$j = 51$$
 to 100 do

$$A = B \times C$$

end for

end for

The number of multiplication required is equal to $\sum_{1}^{100} 1 = 100$.

3.26 Let us assume that the algorithm analysis of an algorithm yields the summation as follows.

$$T(n) = \sum_{i=1}^{n-1} 3 - \sum_{i=1}^{n-1} \sum_{i=1}^{n} 6$$

What is the resultant sum?

Solution:

It can be observed that

$$\underbrace{3+3+\dots+3}_{n-1 \text{ times}} - \underbrace{6n+6n+\dots+6n}_{n-1 \text{ times}} \quad (\because \sum_{i=1}^{n} 6 = 6n)$$

$$= (n-1)3 - (n-1)(6n)$$

$$= 3n-3-6n^2+6n$$

$$= -6n^2+3n-3$$

- **3.27** Suppose an algorithm takes 8 seconds to run an algorithm on an input size n=12. Estimate the largest size that could be compute in 56 seconds. Assume the algorithm complexity is
 - a) $\theta(n)$

$$cn = 8$$

$$12c = 8$$

$$\therefore c = \frac{8}{12} = \frac{2}{3}$$

$$\frac{2}{3}x = 56 Seconds$$

$$\therefore x = 56 \times \frac{3}{2} = 28 \times 3 = 84$$

n = 84 is the largest we can run.

b)
$$\theta(n^2)$$

Solution:

$$cn^2 = 8$$
 Seconds

$$224c = 8$$

$$\therefore c = \frac{8}{224}$$

$$\frac{8}{224}x = 56 Seconds$$

$$x = 56 \times \frac{224}{8}$$

= 1568 Seconds.

3.28 Let us assume that the given two algorithms are A and B. The complexity functions are given as follows:

$$T_A = n^2$$

$$T_A = n + 2$$

What is the breaking point?

Solution:

$$n^2$$
- n - $2 = 0$

$$(n-2)(n+1) = 0$$

$$: n = 2, -1$$

 $\begin{array}{c|cccc}
n & n^2 & n+2 \\
\hline
0 & 0 & 0 \\
1 & 1 & 3 \\
2 & 4 & 6
\end{array}$

... The cutoff value is 2

3.29 Let $t(n) = 3n^3 + 2n^2 + 3$. Prove that this is $O(n^3)$

Solution:

The highest degree of the polynomial is 3.

$$\therefore$$
 O(n^3)

3.30 Let $t(n) = 9n^2$. Prove that the order is $O(n^2)$

$$\therefore 9n^2 \le c \times n^2$$

When $c \ge 9$, this conditions holds good.

$$\therefore 9n^2 \in O(n^2)$$

3.31 Find the smallest threshold number for the polynomial

$$3n^2 + 255 \le 4n^2$$

Solution:

$$4n^3 - 3n^2 - 255 = 0$$

$$\therefore n^2 = 255$$

$$n = \sqrt{255} = 15.96 \mid 15$$

:. Approximately the cut-off threshold is 16.

or

$$255 \le n^2$$

$$n \ge \sqrt{255} = 15.96 \mid 16$$

3.32 Prove that

$$n \in \mathcal{O}(n^2)$$

Solution:

$$n \le c \times n^2$$

This condition holds good for all $c \ge 1$.

$$\therefore$$
 This is in $O(n^2)$.

3.33 Let $t(n) = 6n^2 + 7n + 8$. Prove that this is of the order of $\Omega(n^2)$.

Solution:

$$6n^2 + 7n + 8 \ge c \times n^2$$

This holds good for $c \ge 7$

 \therefore This is in $\Omega(n^2)$.

3.34 Prove that $2^{n-1} + n2^n \in O(4^n)$

Proof:

$$\frac{2^{n-1} + n \times 2^n \times 2^{n-1}}{2^{n-1}}$$
$$= \frac{2^{n-1} + n \times 2^{2n}}{2^{n-1}} \le 0.$$

 4^n This holds good for all c:. This is $O(4^n)$.

3.35 Consider the following segment. Apply step count method and analyze the algorithm segment.

Step 1: Algorithm evencount()

Step 2: Begin

Step 3: sum = 0.0

Step 4: for i = 1 to n do

Step 5: if $(i \mod 2 == 0)$ then

Step 6: sum = sum + i

Step 7: End if

Step 8: End for

Step 9: return(sum)

Step 10: End.

Step 1: Algorithm evencount()	Step	Freq	Total
Step 2: Begin	-	-	-
Step 3: $sum = 0.0$	1	1	1
Step 4: for $i = 1$ to n do	1	n+1	n+1
Step 5: if $(i \mod 2 == 0)$ then	1	n	n
Step 6: $sum = sum + i$			
Step 7: End if	-	-	-
Step 8: End for	-	-	-

Step 9: return(sum) 1 1 1

Step 10: End. - - -

Therefore, the step count = 2n+3 = O(n)

- 3.36 Perform the complexity analysis of the following algorithm segment that simply returns a value using step count.
 - Step 1: Algorithm countodd()

Step 2: Begin

Step 3: count = 0

Step 4: for i = 1 to n do

Step 5: if $(i \mod 2! = 0)$ then

Step 6: count = count + 1

Step 7: End if

Step 8: End for

Step 9: return(count)

Step 10: End.

Solution

Hint: Same as before O(n).

3.37 Perform the complexity analysis of the following segment that initialize the diagonal of a matrix to unity. Use step count.

Step 1: Algorithm sample()

Step 2: Begin

Step 3: for i = 1 to n do

Step 4: for j = 1 to n do

Step 5: if (i==j) then

Step 6: A(i,j) = 1

Step 7: End if

Step 8: End for

Step 9: End for

Step 10: End.

Solution

Step 1: Algorithm sample()	Step	Count	Total
Step 2: Begin	-	-	-
Step 3: for $i = 1$ to n do	1	n+1	n+1
Step 4: for $j = 1$ to n do	1	(n+1)n	(n+1)n
Step 5: if $(i==j)$ then	1	n x n	n x n
Step 6: $A(i,j) = 1$			
Step 7: End if	-	-	-
Step 8: End for	-	-	-
Step 9: End for	-	-	-
Step 10: End.	-	-	-

Therefore, the step count = $(n+1) + n^2 + n + n^2 = 2n^2 + 2n + 1 = O(n^2)$

Therefore, the asymptotic complexity is $O(n^2)$.

3.38 Consider the following segment and perform complexity analysis using operation count. Consider the dominant operations of the algorithm segment.

Step 1: Algorithm sample()	step	count	Total
Step 2: Begin	-	-	-
Step 3: for $k = 1$ to n do	1	n+1	n+1
Step 4: for $m = 1$ to n do	1	n(n+1)	n(n+1)
Step 5: return (k*m)	1	n x n	n x n
Step 6: End for			
Step 7: End for			
Step 8: End.			

Therefore, step count = $n+1+ n^2 + n + n^2 = O(n^2)$.

Therefore, the asymptotic complexity is $O(n^2)$.