Chapter 20

20.1 An algorithm has 0.4 fraction of sequential operation. How much speed-up can be expected?

Solution: Let n be the number of processors. Let it be 5. Sequential operation is 0.4. Therefore,

Speedup =
$$\frac{1}{0.4 + \frac{(1 - 0.4)}{5}} = \frac{1}{0.52} \approx 1.9$$

This implies that the execution using 5 processors would result in an execution that is 1.9 times faster than sequential machine.

20.2 Let Σ be a set of integers. Let $x = \{3, 14, 18, 48\}$. What is the output prefix computation Σ if \oplus is addition? Repeat the process when \oplus is multiplication.

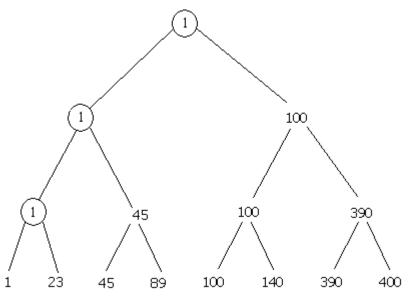
Solution:

If \bigoplus is addition, then

If \bigoplus is multiplication, then

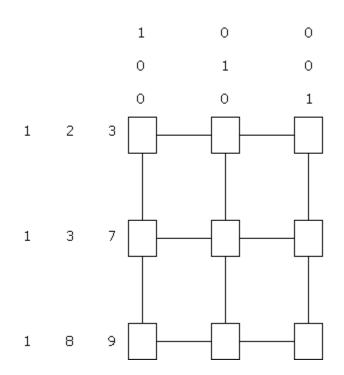
Answer =
$$\{3, 3\times14, 3\times14\times18, 3\times14\times18\times48\}$$

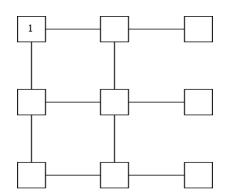
= $\{3, 52, 756, 36288\}$

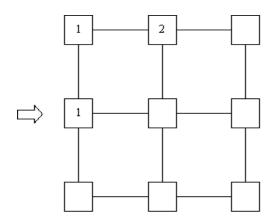

20.3 Find the minimum element of the following array using wire or circuit model. Show the steps for solving the data.

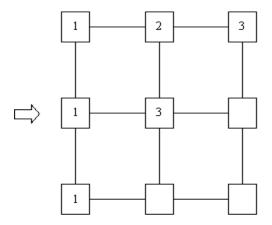
$$A = \{ 1, 23, 45, 89, 100, 140, 390, 400 \}$$

Solution:

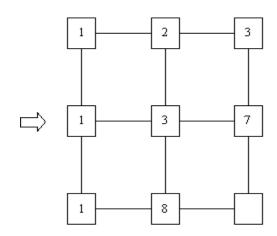

Split this into

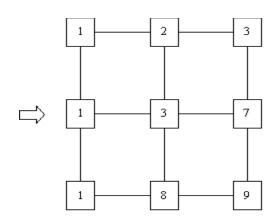

Sridhar: Design and Analysis of Algorithms



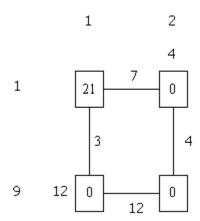

- ∴ Minimum is 1.
- **20.4** Use mesh networks and apply parallel matrix multiplication for the following two matrices. Show the intermediate steps.

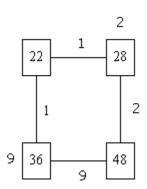
a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 7 \\ 1 & 8 & 9 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

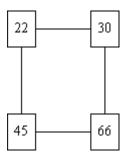




Sridhar: Design and Analysis of Algorithms


b)
$$A = \begin{pmatrix} 1 & 7 \\ 9 & 12 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$


1 2


3 4

1 7 0 0

Sridhar: Design and Analysis of Algorithms

