Chapter 19

19.1 Consider the following graph. In addition all the edge costs are given by the following distance adjacency matrix.

Apply nearest neighbour heuristics for this graph and obtain TSP tour.

Solution:

Let 1 be the starting vertex. The nearest vertex is 5. So the path is 1–5. From 5 nearest is 2.

- \therefore The path is 1–5–2. From 2, the nearest is 4. So the path is 1–5–2–4. From 4, nearest is 1.
- \therefore The path is 1–5–2–4–3. From 3, one can return to the node 1.
- 19.2 Use Fermat primality testing and check whether the following numbers are prime or not.
 - a) 17

Let
$$p$$
 be 17

i.e.,
$$2^{17-1} \mod 17$$
 let $a = 2$

$$2^{16} \bmod 17 \equiv 1$$

$$2^{16} = 65 \times 36$$

- \therefore 17 is a prime number.
- b) 227

i.e.,
$$2^{227-1} \mod 227 \equiv 1$$

- \therefore 227 is a prime number.
- **19.3** Use Fermat testing for Carmichael number like 561 and prove that the algorithm will not work.

$$Hint: 561 = 3 \cdot 11 \cdot 17$$

19.4 Consider the following graph.

Apply the nearest neighbour and obtain TSP hour.

Solution:

Assume 1 is starting vertex

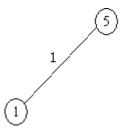
 \therefore The nearest node is 5.

1-5

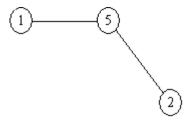
From 5, nearest node is 2.

From 2, nearest node is 4

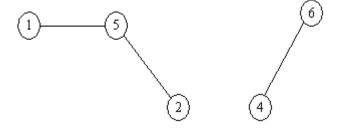
From 4, nearest node is 3

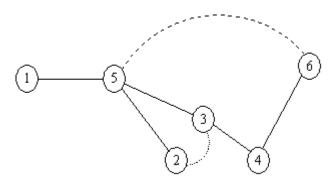

From 3, the unvisited node is 6.

 \therefore the tour is 1-5-2-4-3-6-1.

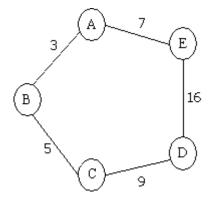

19.5 Use the above graph and apply multi-fragment Heuristics.

Solution:

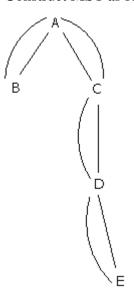

The minimum edge is 1–5


The minimum edge is 5–2

The minimum edge is 6–4



The minimum edge is 4–3


The path can be constructed by adding a cross edge.

19.6 Consider the following graph

Solution:

Construct MST as follows:

The final tour is

$$A--B--A--C--D--E--D--C--A$$

Remove the duplicate nodes to get TSP tour.

19.7 Consider the above graph and apply the nearest neighbour heuristic and obtain TSP tour.

Solution:

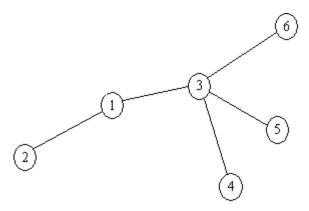
Assume that the starting node is A.

∴ The nearest node is B

So the path is $A \longrightarrow B$

: Then, the path can be extended to E

$$A \longrightarrow B \longrightarrow E$$


: Then the path can be extended to D

The path is $A \longrightarrow B \longrightarrow E \longrightarrow D$

 \therefore the final path is A \longrightarrow B \longrightarrow E \longrightarrow D \longrightarrow A

19.8 Find the vertex cover for the following graph.

Sridhar: Design and Analysis of Algorithms

Solution:

The answer is $\{3, 1\}$

19.9 Find the set cover of the following problem. Let there be four laboratory procedures 1, 2, 3 and 4 and four lab technicians L_1 , L_2 , L_3 and L_4 . The technician who know how to construct the procedure are as follows:

 L_1 , : c_1 , c_3

 $L_2: c_2, c_3, c_4$

 $L_3: c_4$

 $L_4: c_3$

Find the set cover.

Solution:

The answer is $\{L_1, L_2\}$

19.10 For the following knapsack. Apply a 2-Approxmate algorithm and show intermediate results. w = 10.

Item	w_{i}	p_{i}
1	2	8
2	3	15
3	4	16
4	3	21

Solution:

$$\frac{p_1}{w_1} = \frac{8}{2} = 4$$

$$\frac{p_2}{w_2} = \frac{15}{3} = 5$$

$$\frac{p_3}{w_3} = \frac{16}{4} = 4$$

$$\frac{p_4}{w_4} = \frac{21}{3} = 7$$

$$\therefore \text{ Sort it as } \begin{cases} p_1 & p_2 & p_3 & p_4 \\ 7, & 5, & 4, & 4 \end{cases}$$

Add item 4 The
$$w = 10 - 3 = 7$$

Add item
$$p_2 = 3$$
 $w = 7 - 3 = 4$

Add item
$$p_3 = 2$$
 $w = 4 - 4 = 0$

 \therefore The items that can be added are $\{4, 3, 2\}$.

Item 1 can't be added as the weight crossing capacity.