Chapter 16

16.1 Consider a string 'ABCX'. List out the number of sub-sequences and substrings.

Solution:

Some of the possible substrings are

- 'A'
- 'AB'
- 'ABC'
- 'ABCX'
- 16.2 Consider the string 'ABCD'. List out the prefix and suffix of the string.

Solution:

A prefix is formed by deleting zero or more characters from the end of the string.

ABCD	BCD
ABC	CD
AB	D
A	Е
Е	
(Prefix)	(Suffix)

16.3 Consider the string

$$s = \text{`ABCD'}$$

$$t =$$
 'RMST'

Find s + t and t + s length of s and t and substrings of s and t.

Solution:

Length of
$$(s) = 4$$

Length of
$$(t) = 4$$

$$s + t = \text{`ABCDRMST'}$$

$$t + s =$$
 'RMSTABCD'

Substrings of s = A, AB, ABC, ABCD

Sridhar: Design and Analysis of Algorithms

Substrings of t = R, RM, RMS, RMST

16.4 Consider the following text T and pattern P

Text : THIS IS AN EXAMPLE

Pattern: AN

Apply a naïve matching algorithm and illustrate the intermediate steps.

Solution:

THIS IS AN EXAMPLE

AN

Report match.

16.5 Find LCS between strings *A* and *B*.

a) EXAMPLE APE

		E	X	A	M	P	L	E
	+0	+0	+0	+0	+0	+0	+0	+0
A	+0	Λ0	Λ0	\1	<1	<1	<1	<1
P	+0	Λ0	Λ0	Λ1	Λ1	\2	\2	<2
E	+0	\1	<1	Λ1	Λ1	Λ2	Λ2	\3

[:] The LCS of two strings is 3.

b) ACGTCCAT CCCT

		A	C	G	T	C	C	A	T
	+0	+0	+0	+0	+0	+0	+0	+0	+0
С	+0	Λ0	\1	<1	<1	\1	\1	<1	<1
С	+0	Λ0	\1	Λ1	<1	\2	\2	<2	<2
C	+0	Λ0	\1	Λ1	Λ1	\2	\3	<3	<3
T	+0	Λ0	Λ1	Λ1	\2	Λ2	Λ3	Λ3	\4

The LCS of two strings is 4

16.6 Consider the following sequences.

A : acgabdc B : bdc

Solution:

hash(bdc)=691

hash(y[0..2])=689

attempt 1:

acgabdc

...

hash(y[1..3])=699

attempt 2:

acgabdc

•••

hash(y[2..4])=704

attempt 3:

acgabdc

...

```
hash(y[3..5])=684
 attempt 4:
 acgabdc
hash(y[4..6])=691
 BDC
attempt 5:
 acgabdc
   ...
 acgaBDC
 String length: 7
 Pattern length: 3
 Attempts: 5
 Character comparisons: 3
16.7 Find the prefix function for the following strings using the KMP algorithm.
    a. ABCTA
       The prefix function value is
       0\ 0\ 0\ 0\ 1
   b. ABCTABC
```

16.8 Apply the KMP algorithm for matching the following strings and illustrate the intermediate steps:

a) A: EXAMPLE

 $0\,0\,0\,0\,1\,2\,3$

THE prefix value is

B: AMP

EXAMPLE AMP

EXAMPLE AMP Comparison 1

EXAMPLE AMP Comparison 2

Comparison 5 found. Report success.

EXAMPLE

Comparison 6

AMP

EXAMPLE

Comparison 7

AMP

EXAMPLE

Comparison 7, Stop.

AMP

b) A: ACGTCCAT

B: TCCA

ACGTCCAT

T C C A Comparison = 0

ACGTCCAT

T C C A Comparison = 1

ACGTCCAT

T C C A Comparison = 2

ACGTCCAT

TCCA

Comparison = 7 Found, report success.

ACGTCCAT

T C C A Comparison = 8 Stop.

16.9 Apply Boyer-Moore algorithm for the following strings and illustrate the intermediate steps.

a) EXAMPLE and AMP

EXAMPLE

AMP Comparison = 0

Compare A and P Comparison = 1

EXAMPLE

AMP Comparison = 4

Found and report Success.

b) A:ACGTCCAT

B:TCCA

ACGTCCAT

T C C A Comparison = 0

ACGTCCAT

T C C A Compare T and A

Comparison = 1

Comparison = 5, Stop.

16.10 Find the edit distance between the following strings directly.

a) FOOD and FODE

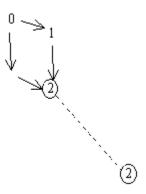
Distance is 2.

		-1	0	1	2	3
			F	0	D	E
-1		o	1	2	3	4
0	F	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	2	3
1	0	2	2	>	1	2
2	0	3	2	1	1	2
3	D	4	3	2	1 —	- 2

Food -

Fo-de

Two operations are required to find distance.


b) SAMPLE and EXAMPLE

Solution:

		-1	0	1	2	3	4	5
			S	А	М	Р	L	E
-1		0	1	2	3	4	5	б
0	E	1	1)	2	3	4	5	5
1	Х	2	2	2	3	4	5	б
2	Α	3	3	2	3	4	5	6
3	M	4	4	3	2	3	4	5
4	Р	5	5	4	3	2	3	4
5	L	6	б	5	4	3	2	3
6	E	7	7	б	5	4	3	2

EXAMPLE

S - AMPLE

∴ Two operations are required to make it same.