Chapter 15

15.1 Write a LC procedure for the 15 puzzle problem.

Solution:

Algorithm branch-bound-puzzle (page no.551) can be used to solve 15-puzzle as well.

15.2 Write a procedure for the assignment problem.

Solution:

- 1. Enqueue 'Start' node to priority queue priority queue p_a .
- 2. Generate children.
- 3. Enqueue the children nodes to p_a .
- 4. If the goal node is obtained, then all assignments are made.

Report success else go to step2.

- 5. End
- **15.3** Write a Branch and Bound procedure for the Knapsack problem.

Solution:

- 1. Arrange the items such that
- 2. Construct the binary tree.
- 3. Compute the lower bound.
- 4. End
- **15.4** Write a Brunch and Bound procedure for TSP

Solution:

Step 1 : Let *C* be the reduced cost matrix.

Step 2 : Set $C(1,1)=\infty$.

Step 3 : Reduce the distance matrix for the rows and columns that contains ∞ .

Step 4 : Compute the lower bound.

Step 5 : End.

15.5 Consider the following 8 puzzle game and draw and illustrate a Branch and Bound technique.

$$4 - 5 \rightarrow 7 - 5$$

6 7 8 4 6 8

Solution:

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

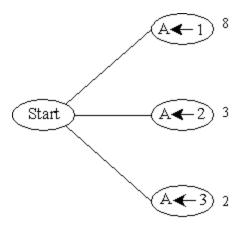
$$\downarrow$$

The path to the goal is a shown below.

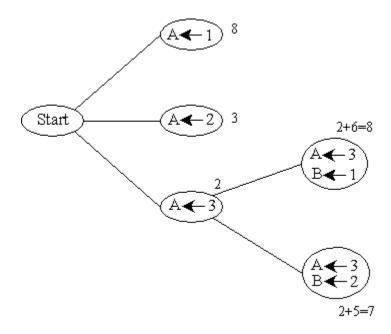
15.6 Solve the following assignment problem using the cost matrix for assigning tasks to workers.

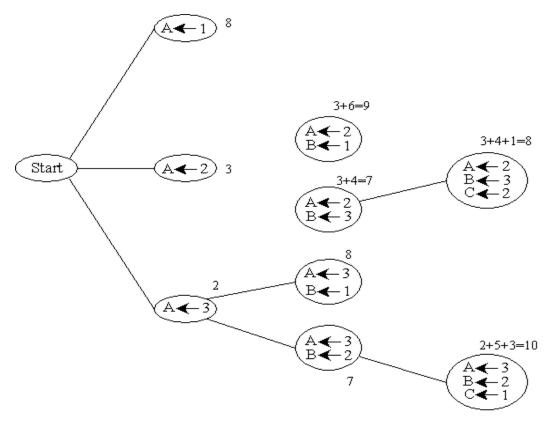
T	1	2	3
A	8	3	2
В	6	5	4
C	3	1	2

Solution:



Compute LB as 8+5+2=15





Therefore assign the tasks as follows:

A←2

B**←**3

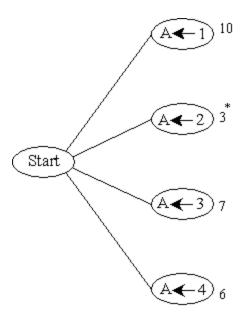
 $C\leftarrow 2$ with cost of 8.

15.7 Use the following cost matrix and solve the assignment problem.

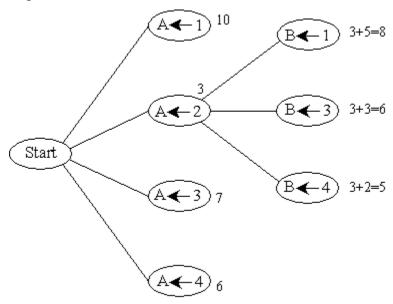
Tasks					
Workers		1	2	3	4
	A	10	3	7	6
	В	5	4	3	2
	С	1	3	6	7
]	D	8	9	5	3

Solution:

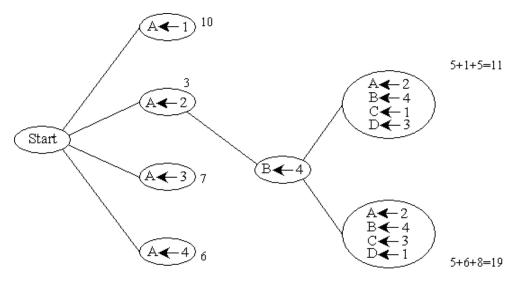
The LB is 10 + 4 + 6 + 3 = 23



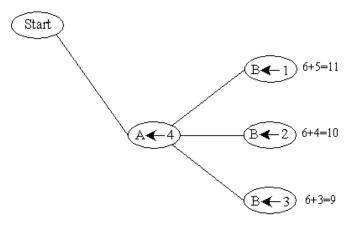
Expand the node further



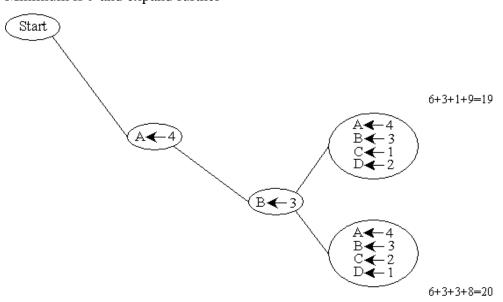
Minimum is 5. So expand it further.



Expand A←4 further



Minimum is 9 and expand further



The optimal assignment is

$$A\leftarrow 2$$
, $B\leftarrow 4$, $C\leftarrow 1$, $D\leftarrow 3$

with minimum cost of 11.

15.8 Solve the following Knapsack problem using the Branch–and–Bound technique. Assume w = 12.

Items	w_i	p_i
1	2	16
2	3	20
3	4	24

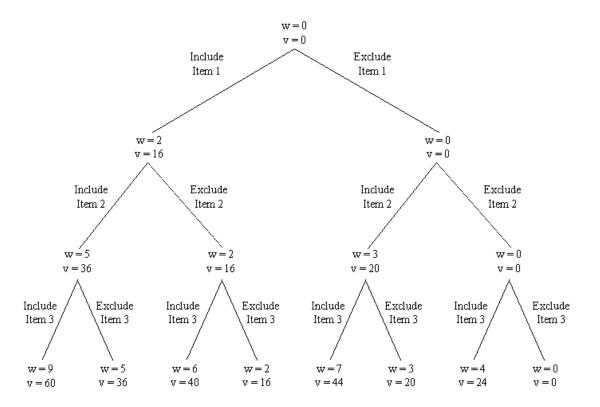
Solution:

$$\frac{v_1}{w_1} = \frac{16}{2} = 8$$

$$\frac{v_2}{w_2} = \frac{20}{3} = 6.6$$

$$\frac{v_3}{w_3} = \frac{24}{4} = 6$$

 $\mathrel{\dot{.}.}$ The items are already in sorted order.



 \therefore The goal is w = 9 with profit of 60.

15.9 Solve the following Knapsack problem using the Branch–and–Bound technique. Assume Knapsack capacity w = 12.

Items	w_i	p_i
1	2	10
2	3	12
3	4	20
4	5	25

Solution:

$$\frac{v_1}{w_1} = \frac{10}{2} = 5$$

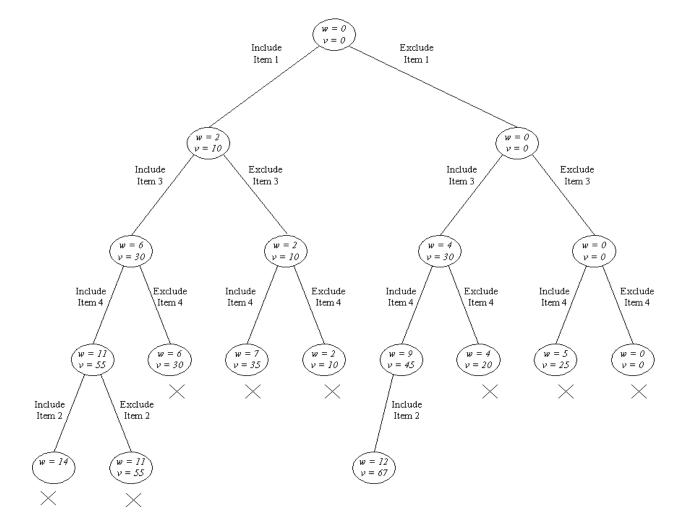
$$\frac{v_2}{w_2} = \frac{12}{3} = 4$$

$$\frac{v_3}{w_3} = \frac{20}{4} = 5$$

$$\frac{v_4}{w_4} = \frac{25}{5} = 5$$

: Arrange items and rearrange it to get as follows:

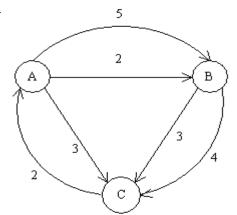
Items	w_i	p_i	
1	2	10	
3	4	20	
4	5	25	
2	3	12	



: It can be observed that the best combination is Include item 3, 4 and 2 with profit 67.

15.10 Solve the following TSP using Branch–and–Bound technique.

Items	A	В	C
A	∞	2	3
В	5	∞	3
C	2	4	∞



row real

row reduction

$$\begin{pmatrix} \infty & 2 & 3 \\ 5 & \infty & 3 \\ 2 & 4 & \infty \end{pmatrix} \stackrel{2}{3} \rightarrow \begin{pmatrix} \infty & 0 & 1 \\ 2 & \infty & 0 \\ 0 & 2 & \infty \end{pmatrix}$$

Total reduction is 2 + 3 + 2 = 7. This is the lower bound.

Path (A,B)

Set 1^{st} row and 1^{st} column $\infty \infty$ and Set A(2,1) as ∞ . This gives.

$$\begin{pmatrix}
0 & \infty & \infty \\
\infty & \infty & 0
\end{pmatrix}$$

This gives reduction as 7 + 0 = 7

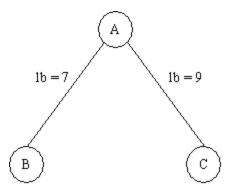
Path (A,C)

$$\begin{pmatrix}
\infty & 0 & \infty \\
2 & 0 & \infty \\
\infty & 2 & \infty
\end{pmatrix}$$

This gives reduction 7 + 2 = 9

So the tree would be

Sridhar: Design and Analysis of Algorithms



So the vertex B is selected. Only the left out node is C.

 \therefore The TSP tour is $A \rightarrow B \rightarrow C \rightarrow A$.

15.11 Solve the following TSP using Hungarian technique.

Solution:

Perform row reduction as follows.

$$\begin{pmatrix}
\infty & 2 & 3 & 4 \\
1 & \infty & 4 & 3 \\
2 & 3 & \infty & 4 \\
4 & 3 & 2 & \infty
\end{pmatrix}$$

To get

$$\begin{pmatrix}
\infty & 0 & 1 & 2 \\
0 & \infty & 3 & 2 \\
0 & 1 & \infty & 2 \\
2 & 1 & 0 & \infty
\end{pmatrix}$$

Perform column reduction to get

Sridhar: Design and Analysis of Algorithms

$$\begin{pmatrix}
\infty & 0 & 1 & 2 \\
0 & \infty & 3 & 2 \\
0 & 1 & \infty & 2 \\
2 & 1 & 0 & \infty
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
\infty & 0 & 1 & 0 \\
0 & \infty & 3 & 0 \\
0 & 1 & \infty & 0 \\
2 & 1 & 0 & \infty
\end{pmatrix}$$

One can choose 'O' to prick the next vertex. By carefully selecting and excluding that row and column we get the path as

$$A \rightarrow B \rightarrow D \rightarrow C \rightarrow A$$

This is with the cost 9.