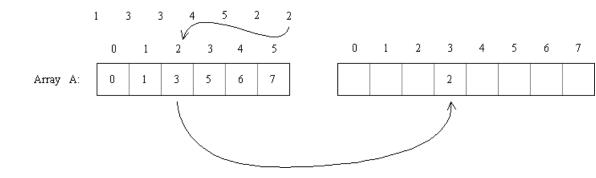
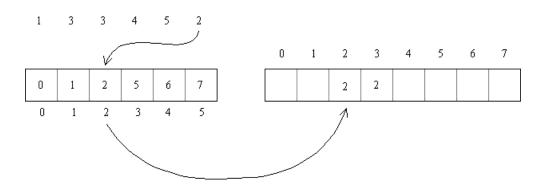
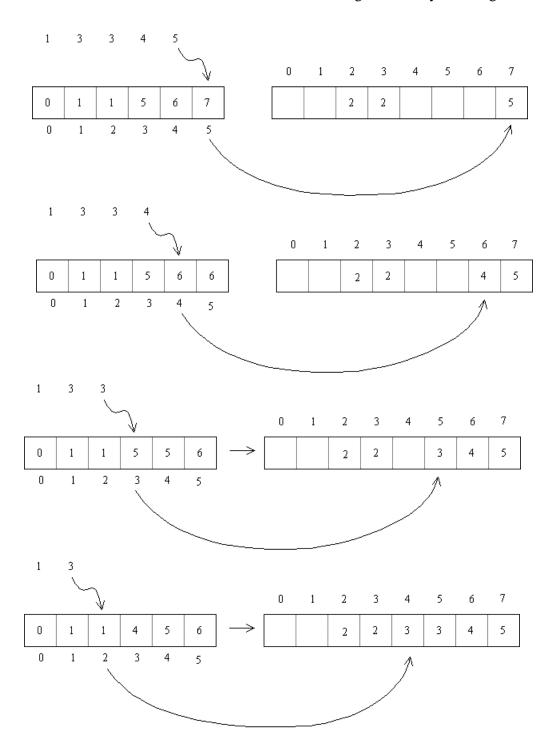
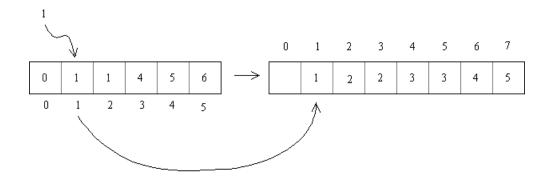

Chapter 10

10.1 Use counting sort and sort the following items:

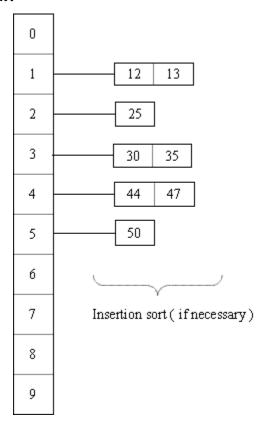

Solution:




0	1	2	3	4	5
0	1	1	2	1	1

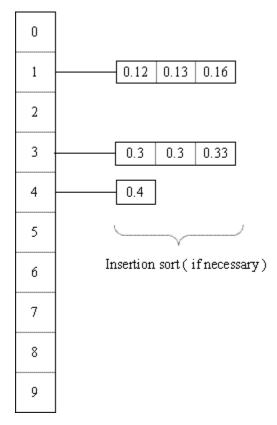

The cumulative frequency is given as

0	1	2	3	4	5
0	1	3	5	6	7



: The sorted list would be

10.2 Use the bucket sort and sort the following items:


Solution:

The distribution of numbers would be as shown above. The collection of the numbers would yield a sorted list.

10.3 Use bucket sort and sort the following items:

Solution:

The distribution of numbers is shown above.

The collection of numbers yields a sorted list.

10.4 Use radix sort and sort the following items:

Initial bucket position

Index	Elements
0	
1	
2	312,122
3	
4	234
5	345
6	516,456
7	

8	
9	199

Distribution of numbers based on the last digit

Collect all the numbers.

Index	Elements
0	
1	312,516
2	122
3	234
4	345
5	456
6	
7	
8	
9	199

312, 122, 234, 345, 516, 456, 199

Distribute based on the middle numbers

Collect all the numbers

Index	Elements
0	
1	122, 199
2	234
3	312,345
4	456
5	516
6	
7	
8	
9	

312, 516, 122, 234, 345, 456, 199

Distribute the numbers based on the 1st digit

Collect the sorted numbers.

122, 199, 234, 312, 345, 456, 516

10.5 Design a hash function for the following set of keys:

1234, 1356, 1788, 1999, 178, 781

Assume m = 11

Sridhar: Design and Analysis of Algorithms

∴ Hash code = key
$$mod \ 11$$

$$1234 \ mod \ 11 = 2$$

$$1356 \ mod \ 11 = 3$$

$$1788 \ mod \ 11 = 6$$

$$1999 \ mod \ 11 = 8$$

$$178 \ mod \ 11 = 2$$

781 mod 11 = 0

10.6 Assuming that a hash table has 11 items, use a simple function hash(key) = key mod 11 and map the following keys:

- **a)** 12, 56, 78, 67, 99, 28, 97
- **b)** Is there any collision?

Solution:

 $12 \ mod \ 11 = 1$

 $56 \ mod \ 11 = 1$

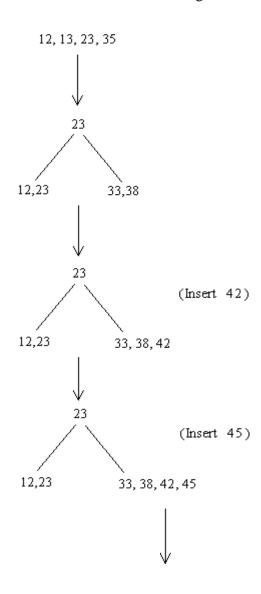
 $78 \ mod \ 11 = 1$

 $67 \mod 11 = 1$

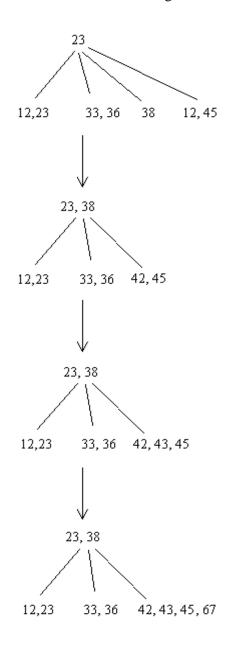
 $99 \ mod \ 11 = 0$

 $78 \ mod \ 11 = 1$

 $97 \mod 11 = 9$


It can be observed that many keys such as 12, 56, 78, 67, and 78 are having collision.

10.7 Use B-tree with T=2 and insert the following keys


Solution:

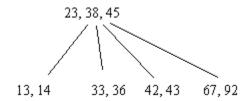
This would become like


12, 13, 23, 33, 38

Sridhar: Design and Analysis of Algorithms



b) Insert key 14



c)

Sridhar: Design and Analysis of Algorithms

d) After deleting key 12

e) After deleting key 67