Chapter 1

1.1 Assume that there are two algorithms *A* and *B* for a given problem P. The time complexity functions of algorithms *A* and *B* are 5n and $\log_2 n$ respectively. Which algorithm should be selected assuming that all other conditions remain the same for both the algorithms?

Solution:

⇒ For all values of 'n', $\log_2 n$ is smaller than 5n. For example, for n=1024, $\log_2 1024 = 10$ but 5n = 5(1024) = 5120 operations.

Therefore, Algorithm B having complexity $\log_2 n$ is preferred.

1.2 Let us assume that for a telephone directory problem P, three algorithms exist, A, B and C. Time complexities of A, B and C are 3n, 5n and log *n* respectively. Assume that the input instance *n* is $10^5 \ 10^3$. Assume that the machine executes 10^9 instructions per second. How much time will algorithms *A*, *B* and *C* take? Which algorithm will be the best?

Solution:

⇒ Here n =10⁵. At computer executes 10⁹ instruction / sec. ∴ Time_A = $\frac{3(10^3)}{10^9} = \frac{3}{10^6} = 0.000003 Sec$ Time_B = $\frac{5(10^3)}{10^9} = \frac{5}{10^6} = 0.000005 Sec$ Time_C = $\frac{\log(10^3)}{10^9}$ Assuming base 10, $\frac{\log_{10} 10^3}{10^9} = \frac{3}{10^9} = 0.00000003 Sec$

 \therefore Third algorithm is best one.